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Abstract  

Accurate knowledge of the spatiotemporal behavior of soil moisture can greatly improve 

hydrological forecasting capability. While ground-based soil moisture measurements are ideal, 

they tend to be sparse in space and only available for limited periods. To overcome this, a viable 

alternative is space-borne microwave remote sensing because of the observational capability it 

offers for retrieving soil moisture in near real-time at the global scale. However, its direct 

applications have been limited due to the uncertainty associated, and the coarse spatial 

resolution these are available at.  

Therefore, this thesis aims to use satellite soil moisture products for assessing flood risk by 

redressing their drawbacks in terms of accuracy and spatial resolution. The research consists of 

three inter-dependent focal areas; evaluation, improvement and application of the soil moisture 

products.  

For the first objective, this thesis compared two alternate soil moisture products using 

spatiotemporally identical passive microwave observations but different retrieval algorithms. 

Complementarity in the performance of the products was identified and accordingly provided 

the basis for the improvement in soil moisture.  

For the second objective, based on the identified complementarity, different formulations of 

weighted linear combination were proposed as a means of reducing the structural uncertainty 

associated with each retrieval algorithm. To address the limitation of resulting retrievals existing 

over coarse grid resolutions, an approach was presented to spatially disaggregate coarse soil 

moisture by only using a remotely sensed vegetation index product. The method provides a 

continuous timeseries of disaggregated soil moisture with a persistence structure closer to what 

is observed.  

Lastly, for the third objective, a fully remote sensing based flood warning method using readily 

available soil moisture and rainfall data, open-access topographic and soil data, was developed. 

This method was applied over a number of anthropogenically unaffected river basins and was 

shown to have promise for flood warning in ungauged watersheds. 



  Preliminaries 

iv 

 

Ongoing and future research will form an integrated pathway for producing an improved soil 

moisture product available at finer spatial resolution, which can be used for various regional 

applications, along with using this to provide real-time flood warnings using freely available 

information to rural and remote communities worldwide. 
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Figure 5.5. Results from the simulation experiment. (a) The x-axis indicates 

Euclidean distances (ξ) calculated by Eq. 5.3, representing the qualities 

of the parent products, and the y-axis, Rdyn or Rsta. The dashed two 

lines present the linear regression of all results from the dynamic and 

static combinations, respectively. (b) The x-axis indicates N sizes, the y-

axis differences between Rdyn and Rsta (i.e., Rdyn − Rsta). ........... 91 

Figure 5.6. (a) Box plots showing combination performances against in-situ 

measurements with the N60 and the two references. The labels on the 

x-axis indicate parent or statically-/dynamically-combined products 

with the references, and the y-axis R between the product and the in-situ 

measurements. The value in each box is the mean of R. Comparison 

against in-situ measurements from the ISMN for dynamically combined 

products using the N60 and (b) ERA-Interim and (c) MERRA-Land as the 

reference, respectively. The x-axis presents R between a dynamic 

product and the in-situ measurements from a station, the y-axis R 

between a static product and the in situ measurements. ........................... 93 

Figure 5.7. Dynamic and static combination results using MERRA-Land as the 

reference at (a) Sandy Ridge station in Soil Climate Analysis Network 

and (b) Sandstone-6-W station in U.S. Climate Reference Network. Each 

panel shows static/dynamic weights (top), as well as timeseries of 

statically- and dynamically-combined soil moisture products (bottom).
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Figure 5.8. Combination performances with the quality of parent products and 

reference against in situ measurements. The x-axis for each panel 

presents the Euclidean distances (ξ) calculated by Equation (8), and the 

y-axis Rinsitu − sta  or Rinsitu − dyn . Linear regression lines 

represent the tendencies of both cases. ............................................................ 95 

Figure 5.9. Combination performances with reference quality against in situ 

measurements. The x-axis presents R between in situ measurements and 

the references ( Rinsitu − ref ), the y-axis R between in situ 
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Figure A5.1. Results from experiments that uses MERRA-Land as the reference for 
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N90 and (f) N120. The more bluish colours in the maps indicate higher 

R against the reference, the overall performance for the various 
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Figure A5.2. Differences in R between the static and dynamic products (N90 and 
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results with (a) and (b) when using MERRA-Land as the reference. With 
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differences are more contrasted with shorter N sizes. ............................ 100 
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For ERA-Interim as the reference, (a) presents mean weights from N90 

over the 2-year study period, and (b) from N120. (c) and (d) show 

corresponding results with (a) and (b) when using MERRA-Land as the 
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Figure A5.4. Standard deviations of optimal weights used for dynamically combined 

soil moisture products. For ERA-Interim as the reference, (a) presents 
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Figure 6.1. Locations of ground stations (red crosses) used for validation. (a) 177 
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Chapter 1  Introduction 

Soil moisture retrieval from passive microwave observations has room for improvement and a 

possibility to be used for flood forecasting in watersheds. This thesis aims to make use of satellite 

soil moisture for assessing flood risk by redressing their drawbacks in terms of accuracy and 

spatial resolution. As a starting point, this chapter provides a general introduction to the research 

field of this thesis, and then problems to be addressed are stated through a number of questions. 

Finally, objectives and structure of thesis are presented. 

1.1.  Background 

1.1.1. Soil Moisture in Water Cycle 

Water, the most plentiful material on Earth, is the principal component of all living things as 

well as key to human existence and progress (Chow et al., 1988). The water cycle (Figure 1.1), 

representing the continuous circulation of different phases of water without beginning or end, 

is one of the important processes in the Earth system. Through the cycle, water vapor is 

evaporated from land/sea surfaces and condensed into clouds in the atmosphere. The water 

returns to the surface as precipitation and flows as various types of runoff, infiltrates into the 

ground, or remains on the surface as water or snow. It is critically important to understand how 

water circulates in space and time. It is also important to forecast significant anomalies in the 

water cycle, to ensure sufficient time is available to protect societies against possible adverse 

impacts. In this regard, hydrological forecasting, especially for extreme events such as floods in 

a watershed, forms an essential means for preventing socioeconomic damage (Carsell et al., 

2004). Such forecasting is based on implementation and calibration of hydrologic models to 

forecast flow rates and water levels, by using real-time data such as rainfall (i.e. external forcing) 

and soil moisture (i.e. antecedent condition). 

Of the variables in the hydrologic cycle, this thesis focuses on surface soil moisture, which is 

defined here as the volumetric amount of water in the uppermost soil layer. It is well known 

that the surface soil moisture is a key variable in understanding the water balance, influencing 
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hydrological and meteorological processes. Soil moisture has persistence, also called “memory” 

(Koster & Suarez, 2001), which directly interacts with precipitation and evaporation through 

infiltration, evaporation and runoff (Dong et al., 2007).  

Therefore, accurate knowledge of the spatiotemporal behavior of soil moisture can improve 

the skill of hydrological forecasting (Alvarez-Garreton et al., 2015; Brocca et al., 2010; Jin, 1999; 

Komma et al., 2008). Accordingly, availability of soil moisture at appropriate spatial and 

temporal resolutions is important in formulating effective forecasting systems (D'Odorico et al., 

2007; Rautiainen et al., 2014; Walker & Houser, 2004).  

1.1.2. Measurements of Soil Moisture 

While ground-based measurements have been a common source of soil moisture information 

these tend to be sparsely located in space and only available for limited temporal periods. 

Therefore, many parts of the world remain ungauged, with even those that are gauged generally 

poor in spatial distribution (Figure 1.2). To overcome this, a viable alternative to ground 

measurements is microwave remote sensing using space-borne passive observations (De Jeu & 

Owe, 2003; Kerr et al., 2001), active microwave observations (Wagner et al., 2003) or a 

combination (Entekhabi et al., 2010a).  

 
Figure 1.1. Schematic diagram of the water cycle 
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Measuring microwave signals is useful in estimating soil moisture in the upper few 

centimeters of the soil due to a large contrast that exists among dielectric constants of liquid 

water (~ 80), soil-water mixture (4 ~ 40) and dry soil (~ 4). In turn the emission and scattering of 

microwave radiation is related to the variation in dielectric constant (Schmugge et al., 1986). 

Added to this, microwave-based observations are unaffected by cloud, do not require the sun, 

are less sensitive to roughness conditions of the surface (Wigneron et al., 1998), and can provide 

information on the water content of the top soil layer even under vegetation coverage (Njoku & 

Entekhabi, 1996). Accordingly, these observations have provided a unique capability for 

retrieving soil moisture in near real-time at the global scale (De Jeu et al., 2008; Petropoulos et 

al., 2015). Microwave radiometry at X- (8-12 GHz), C- (4-8 GHz) and L-band (1-2 GHz) are usually 

used for the soil moisture estimation (Mohanty et al., 2017). Among them, it has been proven 

that L-band is physically more suitable than others because it is a protected band and has better 

penetrating capacity through vegetation canopy, and available from deeper soil layer (Kerr et 

al., 2001; Walker et al., 2013; Wang & Choudhury, 1981). 

The first passive microwave observations resulted from the Scanning Multichannel 

Microwave Radiometer (SMMR) onboard the Nimbus-7 satellite in 1978, observing brightness 

 

Figure 1.2. Distribution of ground stations for measuring soil moisture, taken from the 

International Soil Moisture Network (http://ismn.geo.tuwien.ac.at/ismn/) (Dorigo et al., 

2011) 

 

http://ismn.geo.tuwien.ac.at/ismn/
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temperatures through multiple channels including C-band (6.6 GHz) used for soil moisture 

retrieval. Data has now been available using several active/passive sensors for the past four 

decades (Figure 1.3). L-band has been used for Soil Moisture and Ocean Salinity (SMOS), SAC-D 

(Spanish for Satellite for Scientific Applications-D) and Soil Moisture Active Passive (SMAP), and 

X- and C-band for others such as Advanced Microwave Scanning Radiometer for the Earth 

Observing System (AMSR-E) and Advanced Microwave Scanning Radiometer 2 (AMSR2).  

The active and passive microwave-derived products are systemically different in terms of 

retrieval approaches (Ulaby et al., 1982) as well as their performances by spatial resolution and 

sensitivity to surface conditions (Petropoulos et al., 2015; Walker et al., 2013). Passive 

microwave remote sensing is different from active type by the source of electromagnetic energy 

used. Radiometers (passive) observe the microwave emission from the ground, but active 

sensors detect distance and backscatter by transmitting and receiving pulses of microwave 

 

Figure 1.3. Timeline of space-borne coarse resolution radiometers (passive microwave), 

scatterometers (active microwave) and a combination that can be used for retrieving surface 

soil moisture on global scale (updated fromDorigo et al. (2010)) 
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energy. Therefore, retrieval of soil moisture from passive observations involves different 

approaches than those in active sensors, and has distinctive characteristics in terms of spatial 

resolution and sensitivity to surface conditions. The passive microwave-derived soil moisture 

generally has a coarser spatial resolution due to large antenna sizes for capturing the typically 

weak signal from thermal emission but they are less sensitive to land surface conditions such as 

vegetation and surface roughness. On the contrary, the active microwave-derived products tend 

to have finer spatial resolutions but are difficult to be interpreted due to their high sensitivity to 

the surface conditions. In consideration of the complementarity, the SMAP mission combines 

passive and active microwave observations to retrieve soil moisture at a moderate spatial 

resolution (Entekhabi et al., 2010a). 

1.2.  Problem Statement 

Despite this observational capability of the microwave-derived soil moisture products, direct 

applications have been limited due to uncertainty and coarse spatial resolution (>100 km2). This 

thesis attempts to address these limitations by focusing on the following research questions 

with relation to chapters: 

 

▪ How to use and design model validation algorithms to evaluate satellite-derived soil 

moisture products? - Chapter 3  

▪ How to improve the soil moisture products based on an improved characterization of the 

processes that cause uncertainty in measurements? - Chapter 4  and Chapter 5  

▪ How to reduce structural uncertainty in soil moisture products through effective 

combinational algorithms that tap into the positive aspects of the alternate retrieval algorithms 

being combined? - Chapter 4  and Chapter 5  

▪ How to disaggregate coarse soil moisture to a finer spatial resolution for regional 

applications? - Chapter 6  
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Finally, this thesis presents a new basis for using remotely sensed soil moisture products for 

assessing flood risk and issuing flood warnings in a watershed where ground observations are 

not available (Chapter 7 ). 

1.3.  Objectives and Structure of Thesis 

This thesis aims to make use of satellite-based soil moisture estimates for assessing flood risk 

by redressing their drawbacks in terms of accuracy and spatial resolution. As outlined in Figure 

1.4, this thesis is structured with the three primary research objectives, evaluation, 

improvement and application of the satellite soil moisture, followed by Chapter 2 including a 

literature review about the previous studies related with the research objectives. 

First, with relation to the first objective for evaluating characteristics of soil moisture products, 

two alternate soil moisture products from a space-borne radiometer are compared in Chapter 

3. Details of their retrieval algorithms have been subsequently used throughout this thesis. The 

key findings from the comparisons are used as a basis of the second objective for improving the 

soil moisture product in terms of accuracy using two alternative approaches for reducing model 

structural uncertainty implicit in each retrieval algorithm (Chapter 4 and Chapter 5). In addition 

to this, a simple approach is presented in Chapter 6 for spatially disaggregating coarse soil 

moisture without gaps in disaggregated data. For the third objective, Chapter 7 presents a 

 
Figure 1.4. Structure of thesis 
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methodology for using soil moisture and rainfall data as antecedent conditions and an external 

forcing respectively to assess flood risk. Finally, Chapter 8 presents the main conclusions and 

outlines future works.  

1.4.  Scope and Limitations 

In consideration of the systematic differences between the active and passive microwave-

derived products, the work scope of this thesis is limited to soil moisture products derived from 

passive microwave observations alone because of its long-term availability and diversity 

compared to the active products (Dorigo et al., 2010). Accordingly, all soil moisture products in 

this thesis are from passive microwave observations hereafter unless otherwise stated. 

The main body of this thesis (Chapter 3 to 7) was written on the basis of journal manuscripts 

published or in preparation for publication. They contain some additional information which was 

not included in the original publications due to editorial limits. Data, study area and period of 

each study were selected depending on the best possible availability of key data and/or 

validation at the time of each study as summarized in Table 1.1.  

  

Table 1.1. Summary of key data, study period and area used for each study. 

Objective Ch. Key data Study period Study area General reason 

Evaluation 3 
AMSR2 -JAXA/ 
LPRM surface 
soil moisture  

1 Aug. 2012 to 
31 July 2013 

Global 
AMSR2 products 

available from 
July 2012 

Improvement 

4 
AMSR2 -JAXA/ 
LPRM surface 
soil moisture 

1 Aug. 2012 to 
31 July 2014 

Global - 

5 
AMSR2 -JAXA/ 
LPRM surface 
soil moisture 

1 Jan. 2013 to 
31 Dec. 2014 

Global - 

6 
ESA CCI surface 

soil moisture 
1 Jan. 2010 to 
31 Dec. 2011 

CONUS, Spain 
For a direct 

comparison with 
an existing study 

Application 7 

AMSR2 -LPRM 
surface soil 
moisture /  

SMAP root zone 
soil moisture 

1 Apr. 2015 to 
31 Mar. 2016 

Murray-Darling 
basin, Australia 

SMAP products 
available from 

Mar. 2015 
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Chapter 2  Literature Review 

This chapter provides a literature review about the previous studies related with the three 

research objectives - evaluation, improvement and application of surface soil moisture products 

derived from satellite passive microwave observations. 

2.1. Evaluation of Soil Moisture Products 

Satellite microwave soil moisture products arise from different instruments and algorithms 

(Entekhabi et al., 2010a; Fujii et al., 2009; Jackson, 1993; Kerr et al., 2001; Njoku & Kong, 1977; 

Owe et al., 2008), resulting in differences in their performances (Liu et al., 2012). In other words, 

uncertainties exist in the products due to many complex factors affecting the soil moisture 

retrievals, including imperfect retrieval algorithms and measurement errors (Parinussa et al., 

2011c). The retrieval algorithms link the remotely sensed microwave observations to soil 

moisture values and generally introduce an uncertainty due to methods and model 

parameterization used in the retrievals algorithms. The measurement error is defined as the 

difference between a measured value of soil moisture and its true value, and consists of random 

and systematic errors. The random error is caused by any random factors such as accuracy limits 

of the measuring instrument. The systematic error results from any systematic factors like 

incorrect calibration of the measurement instrument.  

Previous studies have reported necessity of accurately estimated soil moisture products for 

various applications including weather prediction (Drusch, 2007) and flood forecasting (Brocca 

et al., 2010). Therefore, it is essential when using or improving soil moisture products to identify 

their error characteristics in time and space through an evaluation or validation procedure. 

Traditionally, the quality of a soil moisture product is ascertained through comparison with 

ground based observations which serve as the assumed truth, generally using metrics such as 

bias, root mean square error (RMSE), standard error, and correlation coefficient (Draper et al., 

2009; Entekhabi et al., 2010b; Yilmaz & Crow, 2013). However, there are systemic differences 

between the assumed truth and the satellite soil moisture products. The differences come from 

https://en.wikipedia.org/wiki/Measurement


Chapter 2 

9 | P a g e  

 

various sources including the spatial representation of the ground based (point-scale) 

observations (Crow et al., 2012), differences in measurement depth of the in situ sensor and the 

microwave emission, and uncertainties in the (limited) parameterization of the land surface 

roughness and vegetation required for the retrieval of soil moisture values (Parinussa et al., 

2011c). Preprocessing of remotely sensed soil moisture is commonly applied for the majority of 

applications. This is a prerequisite to minimize systematic differences between that would 

otherwise result in (Reichle & Koster, 2004). Preprocessing steps include restricting the 

maximum measurement depth of the ground measurements being used, applying a quality 

control procedure, and/or to checking the area representativeness of stations by considering 

independent data (Dorigo et al., 2014; Yee et al., 2016). Such preprocessing is often achieved by 

removing the climatology and/or scaling to match the unique model soil moisture climatology 

(Reichle & Koster, 2004).  

Alternate validation techniques are sometimes needed to make up for the limitations of the 

verification using ground observations due to the point scale and sparse distribution. A simple 

method for validation is to compare soil moisture products with other independent products for 

which the spatial resolution is identical (e.g. re-analysis products). Other large scale verification 

techniques are the triple collocation (TC) and R-value methods (Parinussa et al., 2011a). The 

former, TC, is a statistical tool for estimating the variance of the random error term from three 

collocated data sets (e.g. soil moisture) without a high-quality reference data set. It is based on 

an assumption that error structures of the three data sets are independent from each other if 

their measurement techniques and retrieval approaches are different. Since (Stoffelen, 1998) 

used TC for evaluating error characteristics for wind vector data, TC has been frequently used 

for evaluating soil moisture data sets from various sources such as passive, active microwave 

and models (Dorigo et al., 2014; Gruber et al., 2016; Scipal et al., 2010; Scipal et al., 2008). Crow 

(2007) first introduced the R-value method for evaluating remotely sensed soil moisture 

products without using ground-based soil moisture observations. The evaluation is 

implemented by calculating the correlation coefficient, called the R-value, between antecedent 
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rainfall errors and analysis increments by the Kalman filter-based assimilation of remotely 

sensed soil moisture data into an Antecedent Precipitation Index (API) based model. The R-

values are typically ranged from 0 to 0.7, and a higher value indicates a higher-quality soil 

moisture data and increased efficiency in filtering errors in the API predictions which are from 

random errors in rainfall data for generating API. 

2.2. Improvements of Soil Moisture Products 

2.2.1. Reduction of Uncertainty  

Many studies have investigated reducing uncertainties of soil moisture products through 

mathematical methods, and fusion or combination of existing products. For example, Du (2012) 

applied Fourier analysis to a time series of soil moisture for detecting high-frequency 

components that reflect soil moisture changes, and then generated long-term datasets with a 

better accuracy. Su et al. (2013a) reduced noise in soil moisture time series using a semi-

empirical model of the observed power spectral density. Kornelsen and Coulibaly (2015) tried 

to reduce multiplicative bias of satellite soil moisture by a few methods such as cumulative 

distribution function (CDF) matching, linear rescaling and copulas. For the latter, Liu et al. (2011b) 

developed improved soil moisture data by blending passive and active microwave based 

products through CDF matching. Recently,Tomer et al. (2016) proposed an algorithm to merge 

strengths of active (high spatial resolution) and passive (high temporal resolution) soil moisture 

products. The algorithm sequentially converts a temporal differential of the passive soil 

moisture to a soil moisture value at the finer spatial (active) and temporal (passive) resolutions 

by using information on spatiotemporal changes of the active soil moisture and spatial 

heterogeneity. 

Many of the previous studies have focused on evaluating the performance of soil moisture 

products with or without efforts to improve the soil moisture products. However, this thesis 

explores reasons for differences and similarities in the performance of soil moisture products 

from the same instrument but, using different retrieval algorithms, uses complementarity in 

their performances as a basis for improvement. Every soil moisture product has relative 
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strengths and weaknesses compared to others, and therefore a product can be supported by 

others and can be made more reliable using this approach. For this, Chapter 3  first investigates 

key differences in soil moisture retrieval algorithms as a means to understand why different 

retrievals from the same satellite sensor can lead to major differences in the derived values. 

These differences are then used to develop new alternatives for combining alternate soil 

moisture fields representing the same domain, as a means of deriving a better product that is 

stable and consistent. Two such combination algorithms are developed, as detailed in Chapters 

4 and 5.  

2.2.2. Spatial Disaggregation  

The coarse resolution of soil moisture products is another key limitation for local applications 

such as hydrologic modelling and agricultural monitoring. To address this limitation, several 

attempts have been made to disaggregate the soil moisture fields to finer spatial resolutions 

using statistical methods such as kriging or fractal interpolation (Kim & Barros, 2002; Loew & 

Mauser, 2008), along with the use of complementary information such as topographic/soil 

properties (Pellenq et al., 2003), land surface temperature, vegetation and soil evaporative 

efficiency derived from high spatial resolution optical/thermal infrared sensors, land surface 

model and radar (Fang & Lakshmi, 2014; Merlin et al., 2008; Narayan et al., 2004; Peng et al., 

 

Figure 2.1. Schematic diagrams representing (a) relationship among soil moisture, land 

surface temperature and vegetation, and (b) feature space constructed by land surface 

temperature and vegetation index 
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2015; Piles et al., 2011). These methods have developed relationships among microwave-

derived soil moisture at a course spatial resolution, and land surface temperature (LST) and 

vegetation index (VI) at finer spatial resolutions (Figure 2.1a). For example, Fang et al. (2013) 

suggested a method which uses look-up tables to relate the datasets at the coarse spatial scale 

to the daily temperature difference at a finer spatial scale to give the daily average soil moisture 

at the finer scale. Peng et al. (2015) proposed a soil moisture disaggregation method by using 

the vegetation temperature condition index (VTCI) as a soil moisture proxy. When plotting 

paired LST and VI over an area for a period, the data generally forms a triangular or trapezoidal 

shape which is called as the LST/VI feature space (Figure 2.1b) where a degree of surface wetness 

is stipulated by a pair of LST and VI at a location within the area, called VTCI (Wan et al., 2004). 

For the latter set of approaches that rely on complementary surface information, one of key 

issues to overcome has been the cloud masks on optical/thermal infrared sensor derived data. 

Such masks tend to cause large gaps in the disaggregated soil moisture and therefore decrease 

the usability of the soil moisture dataset. To overcome this limitation, this thesis presents a new 

disaggregation approach for soil moisture that offers an alternative to the gap-contained data 

using the algorithms described above. More details on this approach are presented in Chapter 

6. 

2.3. Soil Moisture for Flood Warning 

Soil moisture and rainfall play key roles for runoff generation during flooding. Soil moisture 

serves as the antecedent conditions to a flood event modulating rainfall, the main external 

forcing causing flood in any watershed. Therefore, the combined effect of the spatiotemporal 

dynamics of soil moisture and rainfall can explain most of variability in runoff prediction (Durán-

Barroso et al., 2016). 

In past decades, passive microwave based soil moisture products have been widely used for 

flood forecasting or monitoring. For example, Jin (1999) proposed a simple flooding index using 

passive microwave observations and suggested regional thresholds of the index for flood 

monitoring. Lacava et al. (2005) presented a passive microwave based method for improved 



Chapter 2 

13 | P a g e  

 

monitoring of soil wetness variations in relation to a flood in Hungary in 2000. Rao and Sharma 

(2006) used thresholds of a soil moisture product for estimating the flood affected area in 

watersheds in India. Along with these, many approaches have assimilated soil moisture products 

into distributed rainfall-runoff models for improving flood forecasting (Alvarez-Garreton et al., 

2014; Brocca et al., 2010; Chen et al., 2011; Houser et al., 1998; Komma et al., 2008). 

In this thesis, a novel approach is presented for identifying flood risk in a watershed using 

readily available soil moisture and rainfall data when ground observations are not available 

(Chapter 7 ). To enable flood warnings to be issued, three key sources of information are 

considered (Figure 2.2); 1) soil moisture as antecedent conditions, 2) rainfall as an external 

forcing, and 3) topographic attributes defining where the two factors interact. As assessment of 

flood risk is performed by considering the amount of incident rainfall and its location within the 

watershed, how the incident rainfall interacts with antecedent soil moisture is then measured 

 

Figure 2.2. Three key sources of information for estimating flood risk in this thesis 
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through satellite remote sensing to generate, transfer and accumulate water on the ground, 

leading to flood risk.  
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Chapter 3  Complementarity of Alternate Soil Moisture 

Products 

This chapter assessed two remotely sensed soil moisture products from the Advanced Microwave 

Scanning Radiometer 2 (AMSR2), a sensor onboard the Global Change Observation Mission 1 – 

Water (GCOM-W1) that was launched in May 2012. The soil moisture products were retrieved 

by the Japan Aerospace Exploration Agency (JAXA) algorithm and the Land Parameter Retrieval 

Model (LPRM) developed by the VU University Amsterdam, in collaboration with the National 

Aeronautics and Space Administration (NASA). The two products were compared at the global 

scale. In addition, the products were evaluated against field measurements from the 47 the 

COsmic-ray Soil Moisture Observing System (COSMOS) network stations in the United States (36 

stations), Australia (7 stations), Europe (2 stations) and Africa (2 stations). 

After examining the retrieval algorithms, it was hypothesized that four factors, namely, physical 

surface temperatures, surface roughness, vegetation and ground soil wetness conditions, may 

affect the quality of soil moisture retrievals. From inter-comparisons at the global scale, 

correlations of the two products highlight differences in the representation of the seasonal cycle 

of soil moisture, with negative correlations found for several regions. Correlations of the anomaly 

timeseries were generally strong (R>0.6) because of soil moisture sensitivity to external 

meteorological forcing and possibly also random noise in the satellite observations. Due to the 

inherent differences in spatial coverage and measurement scale of the COSMOS and satellite 

data, the comparisons in terms of correlation coefficients were found to be the most reliable. 

Both products showed rapid decreases in correlation coefficients under low mean surface 

temperature (< 290K), high mean Enhanced Vegetation Index (EVI) (> 0.3) and highly wetted 

conditions. These findings were further supported by the bias and RMSE estimates which showed 

that JAXA has relatively better performance under dry conditions whilst the bias and RMSE of 

LPRM were generally smaller than JAXA, when considered against the four variables. These 

results provide information on appropriate parametrizations and model selection for the 
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retrieval algorithms and a future research direction to improve the quality by leveraging the 

strengths of the JAXA and LPRM algorithms. With these, when a multi-year dataset is available, 

there will be more confidence in defining the seasonal cycle and the data can be decomposed to 

identify the anomalies where the bias is not relevant. 

This chapter is an edited version of: Kim, S.; Liu, Y.Y.; Johnson, F.M.; Parinussa, R.M.; Sharma, 

A., A global comparison of alternate AMSR2 soil moisture products: Why do they differ? Remote 

Sensing of Environment 2015, 161 (0), 43-62.  

3.1. Introduction 

The Advanced Microwave Scanning Radiometer 2 (AMSR2) is a passive microwave sensor 

onboard the Global Change Observation Mission 1 – Water (GCOM-W1) satellite that was 

launched by the Japan Aerospace Exploration Agency (JAXA) in May 2012. AMSR2 is the 

successor of the successful Advanced Microwave Scanning Radiometer for the Earth Observing 

System (AMSR-E, May 2002 – October 2011), which was a passive microwave sensor widely used 

for the retrieval of soil moisture (Koike et al., 2004; Njoku et al., 2003; Paloscia et al., 2006). 

AMSR-E provided a consistent and continuous dataset for almost a decade. AMSR2 provides 

improved spatial resolution due to its larger reflector compared to its predecessor. Moreover, 

it has an additional 7.3 GHz channel that was developed for Radio Frequency Interference (RFI) 

mitigation and an improved calibration system (Imaoka et al., 2010). The JAXA developed a soil 

moisture retrieval algorithm (Fujii et al., 2009) and has made available its soil moisture product 

from AMSR2 since July 2012. Another algorithm, the Land Parameter Retrieval Model (LPRM), 

developed by the VU University Amsterdam in collaboration with the National Aeronautics and 

Space Administration (Owe et al., 2001), has been applied to AMSR2 passive microwave 

observations to derive a soil moisture product (Parinussa et al., 2014). The LPRM also produces 

land surface temperature (LST) and vegetation optical depth (VOD) which is an indicator of the 

total vegetation water content of above-ground biomass (Liu et al., 2011a; Liu et al., 2013). 
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Given that the underlying microwave emission observations are the same for the LPRM and 

JAXA retrieval algorithms, an exciting opportunity is now available to assess the effects of 

algorithms on the resulting AMSR2 soil moisture products. A preliminary correlation analysis 

between the daily LPRM and JAXA soil moisture products, for one year at the global scale shows 

that there are a number of similarities and differences between these products (Figure 3.1). 

I seek to answer the obvious question that arises from Figure 3.1 – what are the reasons for 

their similarities and differences? Previous studies have compared individual remotely sensed 

soil moisture product to ground-based measurements at a regional (Brocca et al., 2011; Draper 

et al., 2009; Gruhier et al., 2010; Yee et al., 2013) or global scale (Al-Yaari et al., 2014; Albergel 

et al., 2012b; Albergel et al., 2013). These performance verifications have generally been limited 

to examining differences with little attention to identifying the causes for these differences. The 

objectives of this chapter are twofold. First is to provide a guidance for users of these products 

by performing a comprehensive comparison between these two AMSR2 soil moisture products 

as well as with ground-based measurements for a single year. The second aim is to identify the 

reasons for the differences and similarities between the two remotely sensed products for 

better understanding and further improvements of the algorithms. While the JAXA and LPRM 

 

Figure 3.1. Spatial distribution of Pearson correlation coefficients (R) between the daily JAXA 

and LPRM soil moisture products for the period August 2012 through July 2013. The soil 

moisture products are from the descending overpasses of 10.7 GHz (X-band); the regions 

with dense forests are masked out 
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algorithms start from the simple radiative transfer model (Mo et al., 1982), they use different 

ways to define the physical surface temperature, surface roughness, vegetation conditions and 

dielectric constants. The influence of these four factors will be investigated in detail. 

More details of the JAXA and LPRM AMSR2 products, ground soil moisture measurements and 

statistical methods used in this study are described in 3.2. The results of the spatiotemporal 

comparisons are presented in 3.3 with an emphasis on the regions or time periods where these 

two products differ. The last sections discuss the results and suggestions for future research 

directions. 

3.2. Data and Methods 

Datasets used over the study period 1 August 2012 through 31 July 2013 are listed including: 

1) two AMSR2 soil moisture products (the JAXA and LPRM algorithms), 2) field soil moisture 

measurements collected from the COSMOS and USCRN networks, 3) enhanced vegetation index 

(EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) (Justice et al., 1998) to 

represent global green vegetation density, 4) topographic data from (the Global Land One-

kilometer Base Elevation (GLOBE) Digital Elevation Model (DEM), version 1.0 (GLOBE-Task-Team 

& Others, 1999) used as an indicator of the large-scale surface roughness, 5) soil temperature 

level 1 data from ERA-Interim produced by the European Centre for Medium-Range Weather 

Forecasts (ECMWF) (Dee et al., 2011) to mask out data with freezing condition and 6) 

precipitation data from Tropical Rainfall Measuring Mission (TRMM, 3B42 V7) (Huffman & Bolvin, 

2014) for qualitative comparisons with the temporal dynamics of the satellite soil moisture 

products. 

3.2.1 Satellite-Based Soil Moisture Products 

The LPRM product provides AMSR2 soil moisture retrievals for the 6.9, 7.3 and 10.7 GHz 

channels as this algorithm can be applied to low microwave frequencies (<20 GHz), whereas the 

JAXA product is only available for 10.7 GHz. Although the soil moisture retrievals from lower 

microwave frequencies are expected to be more accurate (Parinussa et al., 2011c) this study 



Chapter 3 

19 | P a g e  

 

focuses on the soil moisture retrievals from 10.7 GHz at a 0.25° global grid that is available from 

both retrieval algorithms. Another benefit is that RFI issues are less severe for the 10.7 GHz soil 

moisture retrievals than the 6.9 GHz over the USA (Njoku et al., 2005) where most of ground 

stations are distributed for this study (Figure 3.3). Differences have been noted between 

ascending and descending overpass soil moisture retrievals as the geophysical conditions are 

different at day- and night-time (Draper et al., 2009; Fujii et al., 2009; Owe et al., 2001). As night-

time is more favorable to retrieve soil moisture because of the equilibrium thermal conditions 

vegetation and near-surface soil (De Jeu et al., 2008), only soil moisture products from 

Table 3.1. Details of satellite-derived soil moisture, field soil moisture measurements and 

ancillary data used in this study. 

Data Product name 
Temporal 

resolution 

Spatial 

resolution 
Units 

AMSR2 

-JAXA 
Level 3 geophysical parameter SMC Daily 0.25° m3/m3 

AMSR2 

-LPRM 
Level 3 soil moisture Daily 0.25° m3/m3 

COSMOS Level 3 SM12H Hourly 

A few 

hundred 

metres 

m3/m3 

USCRN SOIL_MOISTURE_5_DAILY (depth 5cm) Hourly 
Point 

measurement 
m3/m3 

MODIS 

EVI 
MOD13C2 Monthly 

0.25° 

(Resampled) 
- 

Digital 

Elevation 

Model 

Global Land One-kilometre Base Elevation 

(GLOBE) Digital Elevation Model, Version 

1.0 

- 
0.25° 

(Resampled) 
- 

Soil 

Temperature 

European Centre for Medium-Range 

Weather Forecasts (ECMWF) re-analysis 

(ERA) interim, Soil Temperature Level 1 

6-hourly 0.25° K 

Precipitation 

Tropical Rainfall Measuring Mission 

(TRMM), 

3-hourly product 3B42 (V7) 

Daily 

(Aggregated) 
0.25° mm/day 
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descending overpasses are used in the main text, while results from the ascending overpass data 

are presented in the appendix of this chapter. 

The simple radiative transfer model (Mo et al., 1982) is the basis for both the JAXA and LPRM 

algorithms to retrieve soil moisture from passive microwave observations. Ignoring attenuation 

effects by the atmosphere, the microwave brightness temperature (Tb), observed at the satellite, 

consists of three components (Figure 3.2); 1) the radiation from the soil attenuated by the 

overlaying vegetation layer, 2) the upward radiation from the vegetation layer and 3) the 

downward radiation from the vegetation, reflected upward by the soil and again weakened by 

the vegetation canopy (Owe et al., 2001). Each term can be expressed in sequence with 

 
Tb(𝑝) = Tser(𝑝)Γ(𝑝) + (1 − ω(𝑝))Tc(1 − Γ(𝑝)) 

            +(1 − er(𝑝))(1 − ω(𝑝))Tc(1 − Γ(𝑝))Γ(𝑝) 
Eq. 3.1 

Where p represents a polarization (horizontal or vertical); Ts and Tc represent physical 

temperatures of the soil and vegetation canopy respectively (K); ω is the single scattering 

albedo; er  is the rough surface emissivity; Γ is the transmissivity defined with vegetation 

optical depth (τ).  

 
Figure 3.2. Simple radiative transfer model for retrieving soil moisture using passive 

microwaves consisting of three components  
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Both algorithms use brightness temperature at 10.7 GHz and 36.5 GHz channels from AMSR2, 

but they have differences in estimating physical surface temperature, surface roughness, 

vegetation dynamics and linking dielectric constants to soil moisture by dielectric mixing models 

by which a soil moisture retrieval algorithm based on the simple radiative transfer model can be 

differentiated from each other (Neelam & Mohanty, 2015).  

3.2.1.1. AMSR2 – JAXA 

The current JAXA algorithm (Fujii et al., 2009) is an improved version of the predecessor which 

was employed as the JAXA standard algorithm (Koike et al., 2004). Considering the simple 

radiative transfer model in Eq. 3.1, in the JAXA implementation, both Ts and Tc are fixed as 293 

K (20° C) (Koike, 2013) and the emissivity is defined by using both polarizations (Wang & 

Choudhury, 1981) by 

 𝑒𝑟 =  [1 − {(1 − 𝑄) ∙ 𝑅𝑝 +  𝑄 ∙ 𝑅𝑞 ∙ 𝑒−ℎ∙𝑐𝑜𝑠2𝑢}] Eq. 3.2 

where Q represents the polarization mixing ratio; R is the reflectivity expressed by the Fresnel 

equations in terms of the incidence angle (u) and the dielectric constant (k); q is the opposite 

polarization from p. The dimensionless roughness parameter (h) is calculated by using the 

variance (σ2) of the height distribution of the land surface and the microwave wavelength (λ) as 

Eq. 3.3 (Choudhury et al., 1979)  

 h = 4 ∙ 𝜎2 ∙ (2π/λ) Eq. 3.3 

𝑒−ℎ∙𝑐𝑜𝑠2𝑢 in Eq. 3.2 is defined as H with Q and H for 10.65 GHz assumed to be constants (Koike, 

2013) based on a site experiment in Mongolia, which minimized differences between satellite-

derived and in situ values of two indices, the Polarization Index (PI) (Paloscia & Pampaloni, 1988) 

and the Index of Soil Moisture (ISW) (Koike et al., 1996).  

To consider the vegetation, the Jackson and Schmugge model (Jackson & Schmugge, 1991) is 

applied for the relationship between τ and the vegetation water content (Wc) with the 

vegetation parameter b. 
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 𝜏 =  𝑏 ∙ Wc Eq. 3.4 

The values for b and ω were obtained from a ground-based vegetation observation 

experiment by a Ground-Based Microwave Radiometer (GBMR). One of the main improvements 

of the new JAXA algorithm is the use of the fractional vegetation coverage (fc) based on the 

MODIS Normalized Difference Vegetation Index (NDVI). In this new algorithm, the total 

brightness temperature observed by the satellite is expressed as the sum of bare soil and 

vegetation brightness temperature proportional to fc calculated using NDVI.  

With respect to the dielectric constants, which affect the emissivity used in the Fresnel 

equations, the Dobson model (Dobson et al., 1985) is used based on a site experiment using 

GBMR (Fujii et al., 2000). Generally, emissivity tends to decrease as soil moisture increases 

(Gadani et al., 2011). However, it was found that under relatively dry conditions (soil moisture 

less than 0.1 m3/m3) the apparent emissivity increased when the soil moisture increased. This 

was thought to be due to emissivity extinction and lower physical temperature in deeper 

penetration depths under relative dry conditions. The four-stream fast model (Liu, 1998) is 

adopted in the JAXA algorithm to reflect the results of the GBMR experiment. It is expected that 

this will lead to higher values of soil moisture in the JAXA product under dry conditions than 

would otherwise be the case. 

A database of lookup tables depending on fc was thus established to obtain the Wc and the 

soil moisture corresponding to PI and ISW calculated from observed brightness temperatures at 

10 GHz (V, H) and 36 GHz (V) (Koike, 2013). The retrieved soil moisture ranges from 0 to 0.6 

m3/m3. 

3.2.1.2. AMSR2 - LPRM 

The LPRM algorithm is applicable for low microwave frequencies (<20 GHz). The soil moisture 

and VOD which is an indicator of the total vegetation water content of above-ground biomass 

(Jackson & Schmugge, 1991) are retrieved simultaneously from the dual-polarization brightness 

temperatures. The vertically polarized Ka-band (37 GHz, Tb(37GHz[V])) is used to estimate the 

physical temperature of the soil surface (Ts) following a linear relationship between Tb(37 GHz[V] 
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and Ts (Parinussa et al., 2011b). The LPRM assumes that Tc is equal to soil surface temperature 

Ts, therefore the LPRM soil moisture products from the night-time overpasses are more reliable 

as the minimal temperature gradients at night-time are more favorable for the retrievals (De Jeu 

& Owe, 2003).  

The surface roughness parameter (h) and the polarization mixing ratio (Q) are estimated as 

constants but take different values from JAXA (Njoku & Li, 1999) and the single scattering albedo 

is set to a constant of 0.06 as an average value from a number of related studies (Owe et al., 

2001). 

The transmissivity (Γ) is defined using τ and the incidence angle (u) and expressed as; 

 Γ = 𝑒−𝜏/cos 𝑢 Eq. 3.5 

where τ is expressed in terms of k, u and the Microwave Polarization Difference Index (MPDI) 

(Meesters et al., 2005), with MPDI is defined with microwave brightness temperatures at both 

polarizations, Tb[V] and Tb[H] as shown in Eq. 3.6 (Becker & Choudhury, 1988). 

 MDPI = (Tb[V] − Tb[H])/(Tb[V] + Tb[H]) Eq. 3.6 

All parameters in Eq. 3.1 can be expressed with the assumed constants or according to k, as 

the emissivity (𝑒𝑟(𝑝)) at both polarizations also can be defined in terms of the dielectric constant 

(k) using the Fresnel equation. In this case, k is obtained by solving Eq. 3.1 through a nonlinear 

iterative procedure. Consequently, the soil moisture is retrieved from k using the Wang-

Schmugge dielectric model (Wang & Schmugge, 1980). 
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3.2.1.3. Key Differences Between JAXA And LPRM Algorithms 

Reviewing the above descriptions, the four key differences between the two algorithms in 

relation to the parameterization models are summarized in Table 3.2 and their implications 

explained below, which are expected to affect the accuracy of the soil moisture products. 

1. Physical surface temperature: The JAXA algorithm assumes that both soil and vegetation 

canopy temperatures are constant (293 K) throughout the year globally. In contrast, the LPRM 

algorithm assumes that these surface temperatures are linearly related to the brightness 

temperature from 37 GHz vertical polarization and therefore the temperatures will vary both 

temporally and spatially. 

2. Surface roughness: In both JAXA and LPRM algorithms, the emissivity is assumed to be 

related to the surface roughness, however different assumptions have been made in the way 

that surface roughness is defined. Both algorithms use vertical and horizontal polarizations but 

they use different constants to define surface roughness. 

3. Vegetation: VOD is calculated differently in the two products. The JAXA algorithm uses the 

optical information from NDVI to calculate the fractional vegetation coverage which is then used 

in a linear relationship between vegetation water content (Wc) and VOD. The LPRM algorithm 

Table 3.2. Summary of main differences between the JAXA and LPRM algorithms 

Parameter JAXA LPRM 

Soil and vegetation 
canopy physical 
temperatures 

Ts = Tc =293 K 
Ts = Tc, linearly related  

with Tb(37 GHz[V]) 

Surface roughness Constants Q and H Constants h and Q 

Vegetation 

τ = b·Wc 
fc = f(NDVI) 

ω = 0.060 ~ 0.063 depending 
on polarization and frequency 

τ = f(MPDI, k, u, ω) 
ω = 0.060 

Dielectric mixing model 
Four-stream fast model  

(Liu, 1998) 
Wang and Schmugge (1980) 

Ts: soil surface temperature, Tc: vegetation canopy temperature, Q: polarization mixing ratio, H and h: roughness 

parameters used in JAXA and LPRM, τ: optical depth, Wc: vegetation water content, b: vegetation parameter, fc: 

fractional vegetation coverage, k: dielectric constant, u: incidence angle, ω: single scattering albedo. 
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uses the microwave brightness temperature (in MPDI) and the dielectric constant to estimate 

VOD. 

4. Dielectric mixing model: Different dielectric mixing models are used in the JAXA and LPRM 

algorithms (Table 3.2) to relate the soil dielectric constant to the soil moisture estimate. In 

addition, the JAXA algorithm separately considers very dry conditions explicitly, whereas the 

LPRM algorithm is the same for all soil moisture levels. 

3.2.2. Field Soil Moisture Measurements 

The cosmic-ray method is a newly developed way to measure soil moisture representative of 

an area of a few hectares and to a depth in the order of a few hundred millimeters in the COsmic-

ray Soil Moisture Observing System (COSMOS) (Zreda et al., 2012). Stationary cosmic-ray probes 

detect neutrons generated by cosmic rays in air, soil and other materials. The neutrons are 

mainly moderated by hydrogen atoms which are primarily located in soil water, and emitted to 

the atmosphere in which they are instantaneously mixed within a few hundred meters and the 

density is inversely correlated with soil moisture (Zreda et al., 2012). At present (2015), 95 

COSMOS stations are in operation providing hourly soil moisture data; 68% of them are in the 

United States with the remainder in Europe, Africa, South America and Australia. Two types of 

data are available: 1) soil moisture for the counting time interval (1 hour) in volumetric units, 

and 2) a 12-hour running average by using the 12-hour robust boxcar filter to reduce the noise 

(Zreda et al., 2012) from the International Soil moisture Network (ISMN) (Dorigo et al., 2011) 

and which is used in this study. 

The use of the COSMOS over different continents ensures consistency in measurement 

techniques and is expected to minimize the uncertainties associated with ground measurements 

which use various probe types, settings and methods over different regions. Additionally, 

COSMOS data is expected to provide an area-representative value over point measurements 

within a footprint of the cosmic-ray probe (Zreda et al., 2012). 

Nevertheless, one known issue with cosmic-ray derived soil moisture is its uncertainties under 

high atmospheric water vapor (Zreda et al., 2012). Previous research has investigated the extent 
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of the problem and has suggested corrections with respect to the atmospheric water vapor 

(Bogena et al., 2013; Rosolem et al., 2013). To avoid possible errors in this study from the 

COSMOS data a well-tested quality control (QC) procedure (Dorigo et al., 2013) has been applied, 

which detects unnatural increases or decreases in soil moisture and flags for those potentially 

doubtful observations. In this study, all flagged soil moisture values are excluded from further 

analysis. Accordingly, the final dataset includes field measurements from 47 stations which have 

at least 6-month overlapping with the satellite observations were used. 

As another way of validating the COSMOS data, soil moisture measurements (soil layer depth 

5 cm) from 17 stations in the U.S. Climate Reference Network (USCRN) (Diamond et al., 2013)  

are compared to COSMOS datasets when one or more USCRN stations are located within 50 km 

(i.e. adjacent grids) of the COSMOS stations (Figure 3.3). The results suggest that the temporal 

patterns of soil moisture measurements between these COSMOS and traditional ground stations 

are well correlated and provide additional confidence in the comparisons with AMSR2. Despite 

the advantages of COSMOS data: the consistency in measurement techniques and the wider 

horizontal coverage compared to point measurements, it should be noted that the difference in 

the measurement depths of the cosmic ray probes and the satellite derived soil moisture 

products still remains a limit just like all studies validating remotely sensed soil moisture, which 

 

Figure 3.3. Locations of 47 COSMOS stations used in this study and coexisting 17 USCRN 

stations, presented with red and blue ‘+’ symbols respectively. The background colour 

indicates annual average EVI during the entire study period 
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use in situ measurements as a reference. It is therefore appropriate to consider the 

discrepancies in absolute values of the two products, which are represented by bias and root 

mean square error (RMSE) in this study, as supportive metrics. However, it should be also noted 

that temporal correlations are less affected by the depth discrepancy problem and therefore the 

main conclusions in this work rely on the correlations. 

The field measurement from each COSMOS station is compared with the satellite-based soil 

moisture grid cell in which the station is located. When two or more stations are in the same 

grid cell, their average is taken first. As the satellite observation is a snapshot at the overpass 

time (01:30 a.m. equatorial local crossing time for AMSR2 descending overpass), the field 

measurement recorded at a time closest to the local overpass time is used for a more direct 

comparison. 

3.2.3. Ancillary Data 

The MODIS enhanced vegetation index (EVI) provides information about global green 

vegetation conditions. In this study, the original monthly 0.05° resolution EVI product 

(MOD13C2) was aggregated to 0.25° by taking the average value of the 25 0.05° grid cells in each 

0.25° grid cell and used as an indication for the vegetation condition at each site. 

As an indication for surface roughness at the remotely sensed soil moisture scale (0.25°), the 

Global Land One-kilometer Base Elevation Digital Elevation Model (GLOBE DEM version 1.0) 

(GLOBE-Task-Team & Others, 1999) was used. In each 0.25° grid cell, there are 625 1km DEM 

grid cells. An indication of the relative surface roughness of each 0.25° grid cell was estimated 

as the variance (σ2) of elevations from all 625 1km-DEM grid cells (Choudhury et al., 1979). The 

spatial distribution of surface roughness values at the global scale can be found in Appendix 

(Figure A3.2). This surface roughness proxy was then compared to the errors in soil moisture 

retrievals for each COSMOS station to test the hypothesis that the differences in the two 

products' algorithms for surface roughness leads to changes in the estimates of soil moisture. 

Although this surface roughness proxy does not exactly represent the overall surface roughness 
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affecting the microwave emission, this simplified investigation provides information on the 

relationship between surface roughness and the retrieval algorithms' performance. 

To evaluate the temporal dynamics of the satellite-based soil moisture products, the 3-hourly 

precipitation product (3B42 V7) from the Tropical Rainfall Measuring Mission (TRMM) (Huffman 

& Bolvin, 2014) was aggregated to daily total precipitation (mm/day). This information can assist 

in interpreting the anomaly timeseries of soil moisture where the responses of both products 

are expected to be influenced by local rainfall. 

It is not possible to retrieve soil moisture under frozen conditions. The LPRM applies an 

internal soil-freezing masking step in the product (Parinussa et al., 2011a) whereas the JAXA 

algorithm does not omit data under such conditions. Therefore, to ensure consistent 

comparisons between the two products, a mask to remove estimates under frozen conditions 

has been used. To construct the mask 6-hourly soil temperature of the top-layer (i.e. 0-0.07 m) 

from the ERA-Interim reanalysis produced by the European Centre for Medium-Range Weather 

Forecasts (ECMWF) (Dee et al., 2011) was adopted. Since the original soil temperature data is 

on the Universal Time Coordinated (UTC) time, they were first converted to local time based on 

station coordinates. Then temporal interpolation was performed between two adjacent 

temperature values to obtain soil temperature values at the overpass time. When the 

interpolated ERA-Interim soil temperature was below 0°C, the corresponding satellite-based soil 

moisture retrievals, field soil moisture measurements, VOD and EVI were masked out. Other 

masks that were applied to the data included removing grid cells along the coastline (i.e. center 

of grid cells within 25 km from the coast) to remove the influence of ocean water. Regions with 

dense vegetation (i.e. annual mean VOD greater than 0.8 at 6.9 GHz derived from the LPRM) 

were also excluded in this analysis (De Jeu et al., 2008). 

3.2.4. Statistical Metrics 

The AMSR2 products were evaluated by comparing the two products to each other as well as 

comparing them to the ground-based soil moisture measurements. The temporal correlations 

between the JAXA and LPRM products were examined over all grid cells for both raw data and 
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anomaly data. The anomaly data was obtained in two steps. The first step was to calculate the 

seasonal cycle by taking a 31-day moving average over the study period 1 August 2012 through 

31 July 2013, while the data used is from mid-July 2012 through mid-August 2013. The anomaly 

data was calculated by removing the seasonal cycle from the raw data. It should also be noted 

that the 1-year analysis period did not allow conclusions on inter-annual variations and this 

could be a topic of interest for the future.  

The seasonal cycles and anomaly timeseries from each product were compared over all grid 

cells by considering their correlations as well as the maximum, minimum and mean values. 

At each grid cell, a paired Student's t-test was used with the daily timeseries to test the 

differences in the mean of the JAXA and LPRM soil moisture products, with a significance level 

of α=0.05 adopted for this test. To compare the satellite-based and ground-based soil moisture, 

three statistical metrics were used, namely, the Pearson correlation coefficient (R), bias and root 

mean square error (RMSE).  
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3.3. Results 

3.3.1. Inter-Comparison of JAXA And LPRM Products; How Are They 

Different? 

The spatial patterns of mean, maximum and minimum values of the JAXA and LPRM soil 

moisture products and their difference are presented in Figure 3.4. The mean values of JAXA 

were generally lower than LPRM. Over the high latitude regions, e.g. Russia and Canada, both 

maximum and minimum values of JAXA were lower than LPRM, which results in the lower mean 

values. Over the other regions (except desert regions), the minimum values of JAXA and LPRM 

were quite similar. The lower mean values of JAXA were primarily caused by its lower maximum 

values. This may be related to the fact that the soil moisture range in the JAXA and LPRM 

algorithms is 0-0.6 m3/m3 and 0-1 m3/m3, respectively. The maximum value (0.6 m3/m3) of the 

JAXA product is a result of the pre-established lookup tables that match soil moisture and 

vegetation water content to microwave brightness temperature-derived indices (i.e. PI and ISW 

see section). The minimum values of the JAXA product over the desert regions (e.g. Sahara, 

Africa, Middle East, south Mongolia and central Australia) are somewhat higher than LPRM. This 

can be attributed to the approach used in the JAXA algorithm to estimate the soil moisture under 

extreme dry conditions (<0.1 m3/m3) as described in the section 3.2.1. With these considerable 

differences in the absolute values between these two products, it is not surprising to see that 

the paired-t test indicates the means of the two products are statistically different for nearly all 

grid cells (Figure A3.1)
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Figure 3.4. Global maps of mean (top panels), maximum (middle panels) and minimum (bottom panels) values of JAXA (left column), LPRM (middle column) 

and differences (i.e. JAXA-LPRM, right column) derived from descending overpasses. 
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The signals in soil moisture products can be decomposed into the 1) seasonal cycle and 2) soil 

moisture anomalies which primarily represent responses to rainfall events. The correlation 

coefficients of the seasonal cycle and anomalies between the two AMSR2 soil moisture products 

are presented in Figure 3.5. The soil moisture anomalies of the two products are highly positively 

correlated (Figure 3.5a) because of similar responses to external meteorological forcing and to 

some extent the same random noise in the satellite observations. Over the 'transitional regions' 

where strong coupling between soil moisture and precipitation are expected, e.g. central Great 

 
Figure 3.5. Global maps of correlation coefficients (R) between JAXA and LPRM soil moisture 

products derived from descending overpasses for (a) soil moisture anomalies (Ranomaly) and 

(b) seasonal cycle (Rseason). Three regions with strong positive correlations in seasonal cycle 

(outlined by yellow boxes) are in the transition zones identified by Koster et al. (2004). Six 

regions with strong negative correlations (labelled as yellow crosses) are selected for further 

temporal comparison. 
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Plains of North America, Sahel and India (Koster et al., 2004), both seasonal cycle and soil 

moisture anomalies are highly positively correlated between these two AMSR2 products   

(regions highlighted with yellow boxes in Figure 3.5b). Strong negative correlation coefficients 

in seasonal cycles are also found over many regions, e.g. western Canada, Russia, southeast USA, 

southeast China, central South America and northern Africa (Figure 3.5b) Again, it should be 

noted that the 1 year timeframe in which the products were evaluated does not allow 

conclusions on inter-annual variations and there will be more confidence in the seasonal cycle 

results in future when a multi-year climatology can be constructed. 

To better understand their temporal characteristics, timeseries of the JAXA and LPRM soil 

moisture together with soil temperature and EVI over the highlighted regions in Figure 3.5b are 

shown in Figure 3.6 and Figure 3.7. Over the transition regions, the overall correlations during 

the study period are high and the temporal dynamics as responses to precipitation events are 

very similar (Figure 3.6). However, the recession patterns since the end of the wet season are 

quite different between these two AMSR2 products. Over the Sahel region (Figure 3.6b and c), 

the JAXA soil moisture drops to its lowest value very quickly at the end of the wet season and 

remains constant throughout the following dry season, but the LPRM soil moisture declined 

gradually. When there is no precipitation event, the temporal patterns of the LPRM soil moisture 

tend to be opposite to surface temperature. The apparent difference between these two AMSR2 

products under the very dry conditions may also come from their different dielectric mixing 

models. It is noticeable that the EVI value over India is similar between dry and wet season 

(Figure 3.6d). Meanwhile, the LPRM soil moisture is kept to 0.3 m3/m3 in the dry period whereas 

the JAXA soil moisture drops to 0.1 m3/m3. 
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Figure 3.6. Descending pass timeseries of JAXA, LPRM, temperature and EVI at four locations in the transition zones that have strong positive 

correlations in the representation of the seasonal cycle; (a) the central Great Plains of North America, (b) and (c) Sahel, and (d) India. 
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Figure 3.7. Timeseries of JAXA, LPRM, temperature and EVI at six locations that have strong negative correlations in the representation of the seasonal 

cycle; (a) Canada, (b) Russia, (c) USA, (d) China, (e) South America and (g) North Africa. Different scales on y-axis are used in panel f for better visualization. 
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Over the regions where strong negative correlations in seasonal cycles are observed, it 

appears that JAXA soil moisture variations are generally in proportion to temperature at the 

locations with strong seasonal cycles in temperature (Figure 3.7a-d). In contrast, the seasonal 

cycle of the LPRM soil moisture tends to be opposite to the JAXA product and temperature. 

When the temperature is consistently high (e.g. Figure 3.7e South America), the JAXA soil 

moisture still has a strong seasonal cycle which is similar to the EVI temporal pattern. Meanwhile, 

the LPRM soil moisture drops sharply with increases in EVI in austral summer (i.e. late 2012 to 

early 2013). Over the arid Sahara (Figure 3.7f) with low EVI during the whole year, there are no 

notable variations in the JAXA soil moisture during the whole period, while the LPRM soil 

moisture increases during the rainy season. 

The above observations suggest that over these regions where the JAXA and LPRM soil 

moisture have opposite seasonal cycles, the dynamics of the JAXA soil moisture agrees with 

temperature and/or EVI variations whereas the seasonal cycle of LPRM soil moisture is inversely 

related to temperature and seems to be considerably affected when vegetation density 

(represented by EVI) is high (which is in line with the findings in Parinussa et al. (2011c)). It can 

also be seen in Figure 3.7e that when EVI is high in the austral summer that the behavior of JAXA 

and LPRM is quite different. The performance of the AMSR2 products and vegetation is 

examined in more detail in the next section for all COSMOS stations to determine if a threshold 

when EVI affects soil moisture can been found.  

3.3.2. Comparisons Against Field Measurements  

For the grid cells with particularly high correlations and those with low or even negative 

correlations between the JAXA and LPRM, both products are compared to field measurements 

using the available COSMOS stations over the USA. The USA was selected as it has one of the 

transition zones identified by Koster et al. (2004) and also has areas where the two products 

have similar and different seasonal cycles. 
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At the grid cells with good agreement in the seasonal cycle (Figure 3.8), the LPRM soil 

moisture estimates were generally higher than the JAXA estimates, except for the dry season at 

Santa Rita Creosote (Figure 3.8e). The LPRM soil moisture had strong variations throughout the 

year, while the JAXA soil moisture showed little variation with a similar minimum value around 

0.05 m3/m3 in the dry season for all four locations. Furthermore, the LPRM soil moisture 

 

Figure 3.8. Timeseries of AMSR2 soil moisture retrievals, soil temperature, EVI, precipitation 

and ground soil moisture measurements for four COSMOS stations where Rseason between 

the JAXA and LPRM products are highest among all grid cells with COSMOS stations. Panel 

(a) shows the location of these four stations and Rseason in the background. Different scales 

on y-axis are used in panels d and e for better visualization. 
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followed the temporal patterns captured by the ground-based measurements better than the 

JAXA soil moisture retrievals. 

When it comes to the grid cells with strong negative correlations in the seasonal cycle (Figure 

3.9), it is worthwhile to highlight several points. 1) These stations are in forested areas and the 

mean EVI and VOD values are higher than the average value of all 47 COSMOS stations used in 

this study. 2) The dynamics of the LPRM soil moisture tended to be opposite to field 

measurements and/or the JAXA soil moisture (i.e. Savannah River which has the highest mean 

VOD among them). 3) the LPRM soil moisture values tend to be higher than the JAXA soil 

 

Figure 3.9. Same as Figure 3.8, but for four COSMOS stations where Rseason between the JAXA 

and LPRM products are lowest among all grid cells with COSMOS stations.  



Chapter 3 

39 | P a g e  

 

moisture, which is consistent with the global mean values shown in Figure 3.4. 4) It appears that 

the variance of the LPRM soil moisture product is much larger than the JAXA soil moisture, as 

the former has much more scatter around the seasonal cycle compared to the latter. 5) At 

Savannah River and JERC station which are in relatively dry conditions, the JAXA product shows 

fairly good correspondences to the field measurements. It has been previously found that the 

LPRM product has difficulties in this region (Hain et al., 2011). 

Expanding the comparisons from the 8 stations included in Figure 3.8 and Figure 3.9, the error 

statistics at all 47 COSMOS stations were considered. For each station the error statistics (bias, 

RMSE and R) between both AMSR2 products and ground-based measurements are plotted 

against four independent variables, namely, annual mean temperature, log (h) representing 

coarse scale surface roughness, annual mean EVI and mean value of ground soil moisture (dots 

in Figure 3.10). It should be noted that only dates which are coincident in all datasets were used 

for calculating the error. To better visualize and understand the patterns in these scatterplots, 

smooth curves were added for each plot using robust local regression method. The regression 

used weighted linear least squares with a span of 50% with lower weights assigned to outliers 

and zero weight for data lying outside six standard deviations from the mean (lines in Figure 

3.10). The results from this analysis are discussed in the following subsections.  

1. Annual mean temperature: Biases in the JAXA product are primarily negative, which means 

that the values are smaller than the field measurements, whereas the LPRM product biases are 

generally positive. There is no significant trend in the relationship of RMSE with mean 

temperature for either product, although there is a sharp decrease in the correlations (RJAXA and 

RLPRM) when mean temperature decreases below 290 K. However, the rate of decrease in the 

LPRM correlation-temperature relationship is smaller. This may be due to the large scatter in 

the LPRM correlation-temperature relationship compared to the JAXA case. 
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Figure 3.10 Scatterplots of (y-axis) bias, RMSE and correlation coefficients (R) between AMSR2-based raw soil moisture and field measurements against 

(x-axis) mean temperature, coarse scale surface roughness (log (h)), mean EVI and mean ground soil moisture. A robust local regression method is used 

for smoothing data. 
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2. Surface roughness: The pattern of biases of the JAXA and LPRM products are very similar 

when plotted against the coarse scale surface roughness. When considering RMSE, the largest 

errors in the JAXA product are seen at around log (surface roughness) = 20 which is also the case 

for bias, while no significant trend is observed in the RMSE value of LPRM. There is a lot of scatter 

in the distribution of correlation coefficients against changes in log (h). However, in general, 

there are improvements in LPRM correlations as the surface becomes rougher but JAXA 

correlations decreases with the rougher surface conditions. Further investigations are required 

to assess why LPRM correlations improved and JAXA correlations degrade with increasing 

surface roughness and how this knowledge could be used to improve both products. 

3. Annual mean EVI: The bias in the JAXA product when considered with respect to annual 

mean EVI is larger than for LPRM, particularly at higher EVI values (i.e. mean EVI > 0.3). It is 

observed that the RMSE of JAXA increases strongly when mean EVI is higher than 0.3. The 

correlations of both product show a strong degradation in performance as mean EVI increases, 

with steeper decline in both correlation coefficients, occurring for mean EVI greater than 0.3. 

4. Mean field soil moisture: There is a very clear relationship between errors in both products 

and mean field soil moisture. As mean field soil moisture increases the JAXA product increasingly 

underestimates the soil moisture (negative bias). Correlations of both products steadily 

decrease as mean field soil moisture increases. For the LPRM, bias and RMSE are relatively 

constant for changes of mean field soil moisture. The exception is found for the LPRM product 

under dry conditions (i.e., field soil moisture < 0.2 m3/m3) where soil moisture is overestimated 

and for these sites the JAXA is found to have smaller errors. 

3.4. Discussion 

The primary aim of this study was to provide guidelines for using and improving the JAXA and 

LPRM AMSR2 soil moisture products. In soil moisture retrieval algorithms based on the radiative 

transfer equation (Mo et al., 1982), it is very difficult to estimate parameters such as single 

scattering albedo (ω), polarization mixing ratio (Q) and roughness parameter (h) at the global 

scale due to the lack of experimental data to calculate them. To solve this, the parameters are 
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generally chosen based on past research and limited site experiments (Fujii et al., 2009; Njoku 

et al., 2003; Njoku & Li, 1999; Owe et al., 2001). Uncertainties in the parameterizations have 

been used for error estimations of soil moisture retrievals (Parinussa et al., 2011c). Although 

these parameterization choices will lead to biases and possible errors in the modelled dynamic 

ranges, it has been proved that the soil moisture retrievals generally perform well in terms of 

temporal variability. In many applications and particularly climate studies, the temporal 

variability is likely to be the most important statistic and scaling approaches have been proposed 

to adjust the range of soil moisture (Draper et al., 2009; Entekhabi et al., 2010b). Therefore, in 

this study the temporal variability of soil moisture was firstly focused. The second area of focus 

was to examine the difference in values resulting from the two different algorithms by using raw 

soil moisture retrievals. This second focus assessed the global parameterizations and suggested 

areas where improvements can be made in the parameterizations through improved 

understanding of how the two approaches affect the accuracy of soil moisture retrievals. 

In the analysis, the two AMSR2 soil moisture products were compared with the field soil 

moisture from 47 COSMOS stations. Four primary factors were identified between the JAXA and 

Table 3.3. Summary of relative performance AMSR2-JAXA and LPRM for RMSE and 

correlation coefficients with mean temperature, log (h), mean EVI and mean ground soil 

moisture. The product with generally better results for all 47 COSMOS stations is listed. If the 

performance of both products was similar this is denoted by "Similar" 

Variables Range RMSE 
Correlation 
Coefficients 

Mean soil temp. (K) 
< 290 Similar LPRM 

> 290 Similar JAXA 

Log (h) > 20 * LPRM 

Mean EVI 
< 0.30 JAXA Similar 

> 0.30 LPRM Similar 

Mean ground soil 
moisture (m3/m3) 

dry (< 0.20) JAXA Similar 

wet (> 0.20) LPRM Similar 

 * JAXA product shows better RMSE out of log (h) 18 to 22 
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LPRM retrieval algorithms, namely, physical surface temperature, surface roughness, vegetation 

density and quantitative soil wetness conditions, which were expected to affect the accuracy 

and precision of the satellite products. A summary of the performance of both products with 

respect to the independent variables is presented in Table 3.3 based on the results in Figure 3.10 

and discussions in the previous section. Five main conclusions were drawn. 1) The JAXA 

algorithm generally underestimated the ground soil moisture, whereas the LPRM algorithm 

tends to overestimate soil moisture. The distributions of bias and RMSE of the LPRM product 

are relatively insensitive to changes of the four independent variables, whereas the JAXA soil 

moisture showed larger degradations in performance above certain thresholds. 2) Correlation 

coefficients between AMSR2 products and ground measurements decreased when the mean 

temperature decreased below approximately 290 K, but the degree of decline in the LPRM 

product was smaller than the JAXA product. 3) Even though there was large variance in the 

errors when shown against surface roughness, in general the LPRM correlations increased as the 

surface became rougher whilst the JAXA correlations decreased. 4) The performance of JAXA is 

affected in areas with dense vegetation, particularly for mean EVI greater than 0.30. Correlation 

coefficients of both products decline for mean EVI is higher than 0.3, which is in line with the 

findings in Parinussa et al. (2011c). 5) Distributions of bias and RMSE of LPRM are relatively 

insensitive to variation of mean ground soil moisture; however, the JAXA algorithm performs 

better in dry condition (< 0.2 m3/m3). Correlations for both products gradually reduce as mean 

ground soil moisture increases. 

These results suggest possible areas for future improvement of soil moisture retrievals. 

Nevertheless, there are several limitations with the analyses of this study. The main factors that 

will have affected the results are: 1) use of data in a single year to calculate the statistics and 

shortage of ground stations to derive general conclusions due to the short period of data 

available, and 2) discrepancies in the spatial scale of AMSR2 and COSMOS soil moisture 

measurements. 
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As the AMSR2 data are made available from July 2012, its temporal coverage is less than 2 

years at the time of writing (2014). Therefore, there are not many ground stations with sufficient 

overlap with the study period. Secondly the short record length means that it is not able to 

examine inter-annual variations. Furthermore, the data mask using the 6 hourly soil 

temperature data reduced the number of available data. This insufficient temporal coverage and 

the differences in temporal resolution (i.e., hourly to monthly) likely leads to more uncertainty 

in the results. Future research using multi-year data can potentially address this issue and 

provide further insights into the difference and similarity between these two AMSR2 retrieval 

algorithms and products. 

Figure 3.11 shows the available number of days in common between the two data sets that 

was used to calculate the correlation coefficients. Most of the ground data is in the USA where 

it can be seen that there is generally a relatively low number of available records, with the 

number of available days decreasing as the latitude increases and the chance of freezing 

conditions increases, leading to more masking. Also, evident in Figure 3.11 is a strip across Africa, 

where there are extremely low numbers of days in common between the two data sets. 

Interestingly this effect is not evident in the ascending pass data (Figure A3.6), which indicates 

that it is due to the different processing of the descending pass between the JAXA and LPRM 

algorithms. The JAXA algorithm separates a swath when a UTC scanning time passes 00:00 AM 

and then regards the remain part as the next day retrieval. However, the LPRM algorithm 

 
Figure 3.11. Number of days available to calculate correlations between the JAXA and LPRM 

soil moisture estimates. 
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includes the swath by the south pole in the same day of retrieval. Consequently, the numbers 

of paired observations between the JAXA and LPRM products decrease along the strip. 

The spatial resolution of the AMSR2 soil moisture is 0.25° grid and the area-averaged value 

over each grid represents soil moisture to a depth of few millimeters to centimeters. On the 

other hand, COSMOS soil moisture is an area-representative value within a diameter of a few 

hundred meters and to a depth of a few hundred millimeters. For these reasons, some part of 

the mismatch between the AMSR2 and COSMOS soil moisture products can be attributed to 

these differences in horizontal and vertical support which is translated into the evaluation 

statistics. This is a general problem of all validation studies using in situ measurements that have 

different horizontal and vertical coverages compared with remotely sensed soil moisture. It is 

therefore appropriate to see bias and RMSE as supportive metrics showing the relative 

differences of the two retrievals with the reference dataset and consider correlation coefficients 

as the main metric. 

As noted in the previous section, there is considerable scatter in the ground comparisons 

shown in Figure 3.8, Figure 3.9 and Figure 3.10. This scattering issue has been reported in 

previous work (Draper et al., 2009). In general, this scatter has been explained by the systematic 

differences between the satellite-derived and ground soil moisture. There are also uncertainties 

in averaging all swath data with variations due to the progression of satellite orbit, soil 

parameters and different spatial coverage. In this study, some further possible reasons for the 

scatter in the relationships have been identified. First, the number of data to calculate the 

statistics is reduced by masking out the data under the frozen and forested conditions. Second, 

there are differences in the temporal resolutions of the used data (hourly to monthly). 

3.5. Conclusions 

Most previous studies validating satellite-based soil moisture products have focused on 

comparisons with ground data at the regional scale which have a limited range of climatic and 

vegetative properties, or have only considered the verification without exploring the reasons for 

discrepancies or good agreements. This study provides an important contribution to this area 



Chapter 3 

46 | P a g e  

 

by considering global performance of the two satellite soil moisture products by comparisons 

with ground data under various factors as well as considering the reasons for that performance. 

Due to the different spatial coverage and measurement scales of the COSMOS and satellite 

data, the results of correlation coefficients between them are the most reliable. In this regard, 

it was found that both products show rapid decreases in correlation coefficients under low mean 

soil temperature (< 290K), high mean EVI (> 0.3) and highly wetted conditions. In support of 

these correlation results, it was found that the JAXA product shows relatively better 

performance in bias and RMSE under dry conditions, and the bias and RMSE of LPRM were 

generally smaller than those of JAXA. 

The results from this study suggest areas that improvements in the algorithms could be made. 

Firstly, the different retrievals from the two algorithms along with the relationships of soil 

moisture with the four external variables (i.e. mean temperature, surface roughness, mean EVI 

and mean ground soil moisture) provides information on appropriate parametrizations and 

model selection. Another possibility is a combined product which would leverage the strengths 

of the JAXA and LPRM algorithms, and this would provide improvements in temporal 

correlations after scaling to adjust the dynamic range of the retrievals. With these, an extended 

work with use of a multi-year data will be conducted in the future, by which there will be more 

confidence in defining the seasonal cycle and the data can be decomposed to identify the 

anomalies where the bias is not relevant.  
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3.6. Appendix 

 

Figure A3.1. Global map (descending) of p values from a paired t-test for a null hypothesis, μJAXA 

= μLPRM with α=0.05. Over the desert regions, soil moisture values from both AMSR2 products 

are consistently low during the entire year, and their difference is very small and not statistically 

significant. 

 

Figure A3.2. Global map of coarse scale surface roughness (log (h)) derived from 1-km DEM. 
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Figure A3.3. Global maps of correlation coefficients (R) between the JAXA and LPRM soil 

moisture products derived from ascending overpasses of 10.7 GHz (X-band) for the period 

01/08/2012 to 31/07/2013. (a) Raw soil moisture (Rraw), (b) anomalies (Ranomaly) and (c) seasonal 

cycle (Rseason). 
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Figure A3.4. Global maps of mean (top panels), maximum (middle panels) and minimum (bottom panels) values of JAXA (left column), LPRM (middle 

column) and differences (i.e., JAXA-LPRM, right column) derived from ascending overpasses. 
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Figure A3.5. Scatterplots of (y-axis) bias, RMSE and correlation coefficients (R) between AMSR2-based soil moisture and ground-based measurements 

against (x-axis) mean temperature, roughness (log (h)), mean EVI and mean ground soil moisture. A robust local regression method is used for smoothing 

data. 
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Figure A3.6. Number of available days to calculate correlation coefficients between the JAXA 

and LPRM soil moisture based on ascending data 
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Chapter 4  Combining Multiple Soil Moisture Retrievals Based 

on Maximizing Temporal Correlation: Static Approach 

A method for linearly combining two microwave satellite soil moisture products by maximizing 

the temporal correlation with a reference dataset has been developed. The method was applied 

to two global soil moisture datasets, the JAXA and LPRM products, retrieved from AMSR2 

observations for the period 2012-2014. A global comparison revealed superior results of the 

combined product compared to the individual products against the reference dataset of ERA-

Interim volumetric water content. The global mean temporal correlation coefficient (R) between 

the combined product and this reference was 0.52 which outperforms the individual JAXA (0.35) 

as well as the LPRM (0.45) product. Additionally, the performance was evaluated against in situ 

observations from the ISMN. The combined dataset showed a significant improvement in 

temporal correlation coefficients in the validation compared to JAXA and minor improvements 

for the LPRM product. The mean R for the combined dataset was 0.56, 0.35 for JAXA and 0.56 

for LPRM over the in situ stations. The average improvements were marginal compared to LPRM 

but this is most likely due to the uneven distribution of the selected in situ stations. 

This chapter is an edited version of: Kim, S.; Parinussa, R.M.; Liu, Y.Y.; Johnson, F.M.; Sharma, 

A., A framework for combining multiple soil moisture retrievals based on maximizing temporal 

correlation. Geophysical Research Letters 2015, 42 (16), 2015GL064981.  

4.1  Introduction 

It is common to consider the temporal correlation of the satellite soil moisture and reference 

data sets to characterize temporal dynamics because it is insensitive to bias. In addition, scaling 

approaches have been developed to adjust the dynamic range of soil moisture (Liu et al., 2011b; 

Reichle et al., 2004; Yilmaz & Crow, 2013), the dynamic range of the two products being 

compared is not such an issue and therefore the temporal correlation can be considered as a 

suitable metric (Entekhabi et al., 2010b). To this end, this study develops a methodology to 



Chapter 4  

53 | P a g e  

 

improve the temporal correlation coefficients of satellite soil moisture products compared to a 

reference data. 

As presented in Chapter 3 , the JAXA and LPRM algorithms share a common background in 

the radiative transfer model, but surface temperature, roughness and vegetation are treated 

differently within both algorithms and they also use different dielectric mixing models to convert 

the dielectric constant into soil moisture. Consequently, it was shown that the performance of 

the two products is complementary in many locations in terms of bias, RMSE and, most 

importantly correlation coefficients against a reliable reference (e.g. in situ measurements).  

The main objective of this chapter is to present a method for improving temporal correlation 

with by linearly combining these AMSR2 soil moisture products of which performances are 

complementary. The method applies optimal weights to the AMSR2 products and then 

combines them into one product which has improved temporal correlation by leveraging the 

strengths of both the AMSR2 products. The weights are calculated based on statistics of two 

AMSR2 products; specifically, variance and correlation coefficients against a reference data set, 

and provide information on their relative strengths against each other.  

4.2  Data 

4.2.1 Soil Moisture Data Sources 

This chapter used the daily JAXA (Ver. 1.0) and LPRM soil moisture products from AMSR2 at 

0.25° for the two-year period from 1 August 2012 through 31 July 2014. It is used the AMSR2 

soil moisture products based on the X-band brightness temperatures because it is available from 

both algorithms. This means that the proposed approach will be tested by combining two evenly 

matched products in terms of their ability to retrieve soil moisture rather than the advantages 

from the different wavelengths. However, there is no reason that the combination approach 

could not be used with C-band observations as well as the X-band ones.  

The LPRM relies on an internal algorithm that retrieves LST by using brightness temperatures 

observed at the Ka-band (36.5 GHz) channel (Holmes et al., 2009); however, the JAXA algorithm 

assumes that surface temperature is constant throughout the year (Koike, 2013). To account for 
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frozen conditions, the corresponding AMSR2 soil moisture retrievals (both LPRM and JAXA) were 

masked out when the ERA-Interim soil temperature in the top soil layer (0 – 0.07m) was below 

freezing. 

To calibrate the weights for the combination approach, a reliable reference soil moisture 

product is required. This study used the volumetric water content in the topmost soil layer (0 - 

0.07 m) from the ERA-Interim reanalysis at 0.25° as the reference. Data at the local satellite 

overpass time was obtained by linearly interpolating the 6-hourly reanalysis. The final 

combination depends on the choice of reference data set, which is an arbitrary but unavoidable 

choice. In this study, ERA-Interim was chosen because of its availability over the entire study 

period, global coverage and temporal consistency. However, it should be noted that the 

combination approach has the flexibility to be applied with any other appropriate reference data 

set such as other reanalysis or satellite soil moisture data. In case of using other satellite soil 

moisture data, products from the same sensor but different frequencies or algorithms are 

preferred. This is because the products will then have the same swath pattern, leading to a 

suitable number of paired observations and the same scan time, so that the weather conditions 

are constant. In consideration of this, the Modern-Era Retrospective Analysis for Research and 

Table 4.1. Details of datasets used in this study. 

Data source Variable 
Temporal 

resolution 

Spatial 

resolution 
Units 

AMSR2-JAXA Level 3 geophysical parameter SMC Daily 0.25° m3/m3 

AMSR2-LPRM 
Level 3 Surface Soil Moisture (X-

band) 
Daily 0.25° m3/m3 

AMSR2-LPRM 
Vegetation optical depth  

(C-band) 
Daily 0.25° - 

ERA-Interim 
Soil water contents level 1  

(0-0.07m depth) 
6-hourly 0.25° m3/m3 

ERA-Interim 
Soil temperature level 1  

(0-0.07m depth) 
6-hourly 0.25° K 

MERRA-Land 
Top soil layer soil moisture consent 

(SFMC) 
Hourly 

0.25° 

(Resampled) 
m3/m3 

ISMN 
In-situ measured soil moisture from 

8 networks  
Hourly Point m3/m3 

ESA CCI 
topographic complexity, wetland 

fraction 
- 0.25° % 
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Applications Land (MERRA-Land) (Reichle et al., 2011) was also used as a reference for 

comparing with results using ERA-Interim. 

To validate the combined product, an independent data source is required. In this work, 

ground based observations from the ISMN were used to evaluate the performance of the 

combined remotely sensed soil moisture product. The reason for using the ISMN was that the 

AMSR2 products were available more than two years at the time of writing (April 2015), covering 

more numbers of stations from 8 networks. For minimizing systematic differences from the 

various probe types and methods, a strict pre-process was implemented as described below. 

Details of data used for this study are summarized in Table 4.1. 

4.2.2 Data Preprocessing 

Several preprocessing steps are required to allow the three datasets (remote sensing, 

reanalysis and ground based observations) to be compared. Commonly applied masking 

procedures (De Jeu et al., 2008; Liu et al., 2011b) were adopted as follows to remove conditions 

unfavorable for soil moisture retrievals. First, land adjacent to the ocean or large lakes that may 

be sensitive to open water fluctuations was masked (i.e. center of grid cells within 25 km from 

the coast or large lake). Next, as the emitted soil (moisture) radiation is totally masked under 

dense canopies, these regions were excluded when annual mean vegetation optical depth is 

greater than 0.8 at 6.9 GHz from the LPRM (De Jeu et al., 2008). Results from the soil moisture 

retrievals from the night-time observations (descending satellite path) are presented here as 

they are generally considered to be of higher quality than the day-time observations (ascending 

satellite path) because of the equilibrium thermal conditions vegetation and near-surface soil 

(De Jeu et al., 2008). Results from these day-time observations are available in the Appendix. 

For the ground-based observations, the data set was filtered to ensure only high-quality 

stations were used in validation. The ISMN provides access to 915 ground stations which have 

at least 365 days overlapping with the study period and measurement depths of 10 cm or 

shallower, available over 10 different monitoring networks, mainly located in the USA and 

Europe. Systematic differences between remotely sensed observations and the ISMN are known 
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to be caused by their different measurement depths and the spatial heterogeneity of soil 

moisture that affects the comparison of point observations against coarse scale satellite 

footprint (Crow et al., 2012; Gruber et al., 2013). To overcome the first issue, it was only 

considered in situ measurements from the shallowest soil layer in locations with multiple 

measurement depths (e.g. 10 cm and 5 cm) and applied the standard quality control (QC) flags 

from the ISMN (Dorigo et al., 2013). These QC flags exclude doubtful observations such as spikes 

and sudden breaks in the ground based observations. Second, to evaluate the suitability of the 

ground stations for satellite validation purposes, topographic complexity (TC) and wetland 

fraction (WF) data from the European Space Agency Climate Change Initiative (ESA CCI) (Liu et 

al., 2012; Liu et al., 2011b; Wagner et al., 2012) were used. Only ground stations in grids with 

low WF (<10%) and TC (<10%) were considered for further analysis as these are known as factors 

contaminating the microwave signal (Draper et al., 2012). Furthermore, a simple test was 

performed to check the spatial representativeness of two or more ground-based stations within 

a coarse scale satellite footprint according to Dorigo et al. (2014). The area representativeness 

was defined as the average of three correlation coefficients between in situ data and ERA-

Interim data (RERA-in situ), the JAXA and LPRM products (RJAXA-in situ and RLPRM-in situ). The station with 

 

Figure 4.1. Locations of 159 in situ stations from 8 networks, selected from the ISMN, that 

were used for evaluating performances of combination using the soil moisture retrievals 

from the night-time observations (descending satellite path). 
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the highest area representativeness was selected. Additionally, when two or more correlation 

coefficients including RERA-in situ are significantly (p ≤ 0.05) negative at a station, the station was 

considered as unrepresentative and discarded. The Snow Telemetry (SNOTEL) and Atmospheric 

Radiation Measurement (ARM) networks were excluded since their primary purposes are not 

soil moisture measurements. For the soil climate analysis network (SCAN), only stations which 

have suitable topography and vegetation characteristics, and which were used for the Soil 

Moisture and Ocean Salinity (SMOS) data assimilation experiments (De Lannoy & Reichle, 2015), 

were adopted in this study. Finally, to ensure statistically robust results, stations that have at 

least 100 observations over the entire study period have been only used. The geographic 

distribution of the selected 159 stations over eight networks used in this study is shown in Figure 

4.1. 

4.3 Methodology 

The original linear combination of forecasts was developed by Bates and Granger (1969) and 

created a product that minimized the mean square error (MSE) from two parent forecasts. The 

rationale behind forecast combination is that if one forecast is based on variables or information 

that the other forecast has not considered, or/and the forecast makes a different assumption 

about the form of the relationship between the variables, then the combined product is likely 

to have lower overall error than any of the individual components. A follow-up study (Granger 

& Ramanathan, 1984) showed that the idea could be extended to multiple forecasts and the 

weights optimized by using a restricted least squares regression that assumes the total sum of 

weights is restricted to 1. During the past decades, the combination concept has been widely 

applied to various disciplines dealing with timeseries of forecasts or other products (Clemen, 

1989; Timmermann, 2006; Wasko et al., 2013). For a recent example, Khan et al. (2014) 

proposed an approach combining five global sea surface temperature forecasts by seasonality-

based dynamic weighting factors. The following is a summary of the original forecast 

combination. Given two sets of unbiased forecasts or products (F1 and F2, n×1) a combination 

(Fc) can be expressed with a weight (w), ranging from 0 to 1, as 
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 𝑭𝒄 = 𝑤𝑭𝟏 + (1 − 𝑤)𝑭𝟐 Eq. 4.1 

where n is the length of the forecasts. The optimal weight w, which leads to the minimum MSE 

for the combined Fc against a reference, is expressed as  

 𝑤 =  
𝜎𝜀2

2 − 𝜌𝜀𝜎𝜀1
𝜎𝜀2

𝜎𝜀1
2 + 𝜎𝜀2

2 − 2𝜌𝜀𝜎𝜀1
𝜎𝜀2

 Eq. 4.2 

where 𝜎𝜀1
2  and 𝜎𝜀2

2  are the error variances of F1 and F2 against the reference respectively, and 

𝜌𝜀 is the correlation between the two sets of errors.  

As the remotely sensed soil moisture products are retrieved by various algorithms which are 

based on different variables, information and assumptions (Kim et al., 2015a), it is valid to 

extend the combination scheme to soil moisture datasets. As discussed previously, the temporal 

correlation coefficient is the most important indicator of the utility of remotely sensed soil 

moisture products. However existing combination approaches focus on the minimization of the 

MSE. Minimizing the MSE will also improve the temporal correlation coefficients because MSE 

consists of three components contributed by bias (differences in temporal mean), variance 

(dynamic range) and correlations (temporal pattern) (Su et al., 2013b). However, given the 

importance of the temporal patterns in soil moisture analysis, it is aimed to answer the following 

question: Can a combination framework to solely maximize the temporal correlation coefficients 

rather than minimizing MSE and applied to the remotely sensed soil moisture products?  

One can consider that two vectors of unbiased soil moisture retrievals 𝜽𝟏 and 𝜽𝟐 (n×1) are 

linearly combined into 𝜽𝒄 by applying a weighting factor w, 0 to 1 such that 

 𝜽𝒄 = 𝑤𝜽𝟏 + (1 − 𝑤)𝜽𝟐 Eq. 4.3 

The Pearson correlation coefficient (R) between 𝜽𝒄 and a reference (𝜽𝑹𝒆𝒇) can be expressed 

as a function of w according to the definition of R and Eq. 4.3, and this is an optimization problem 

according to 
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Maximize 𝑅 =  𝑓(𝑤) =

𝐸(𝜽𝒄 − 𝜇𝐶)(𝜽𝑹𝒆𝒇 − 𝜇𝑅𝑒𝑓)

𝜎𝑐𝜎𝑅𝑒𝑓
 

Subject to 0≤ 𝑤 ≤ 1 

Eq. 4.4 

where 𝜇𝐶  and 𝜇𝑅𝑒𝑓 are the mean values, and 𝜎𝑐 and 𝜎𝑅𝑒𝑓 are the standard deviations of 

𝜽𝒄 and 𝜽𝑹𝒆𝒇 respectively. For this case with only two parent products which have positive 

correlation coefficients against the reference, differentiating Eq. 4.4 with respect to w, the 

maximum R between the combined product and the reference is found when: 

 𝑤 =  
𝜎2(𝑅1∙𝑅𝑒𝑓 − 𝑅1∙2 ∙ 𝑅2∙𝑅𝑒𝑓)

𝜎1(𝑅2∙𝑅𝑒𝑓 − 𝑅1∙2 ∙ 𝑅1∙𝑅𝑒𝑓) + 𝜎2(𝑅1∙𝑅𝑒𝑓 − 𝑅1∙2 ∙ 𝑅2∙𝑅𝑒𝑓)
 Eq. 4.5 

where each 𝜎 presents the standard deviation of each product, and R is the temporal 

correlation coefficient between two products. The details of the derivation of Eq. 4.5 are in the 

a appendix of this chapter. When applying the weighting factor which is calculated by Eq. 4.5 

and in the constrained range (0 to 1), the correlation coefficient between the combined product 

and the reference will always be larger than or equal to the correlation coefficients between 

each original product and the reference. In the case of a negative correlation coefficient for 

either of the parent products, the weights can be optimized numerically to maximize R and 

ensure that the weights are between zero and one. 

To apply the proposed methodology, the first requirement is to remove the systematic 

differences among the datasets. This was achieved by normalizing the two parent products (i.e. 

JAXA and LPRM) against the chosen reference through (Draper et al., 2009).  

 𝜽𝐍𝐎𝐑𝐌𝐀𝐋 = (𝜽𝐑𝐀𝐖 − 𝜃RAW
̅̅ ̅̅ ̅̅ ̅) ×

std(𝜃REF)

std(𝜃RAW)
+ 𝜃REF

̅̅ ̅̅ ̅̅  Eq. 4.6 

where, 𝜽𝑵𝑶𝑹𝑴𝑨𝑳 is the normalized soil moisture, 𝜽𝑹𝑨𝑾, raw soil moisture, 𝜽𝑹𝑬𝑭, reference 

soil moisture, �̅�, mean of 𝛉, and 𝑠𝑡𝑑, standard deviation. When the two parent products are 

normalized against the same reference, Eq. 4.5 can be simplified to 
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 𝑤 =  
𝑅1∙𝑅𝑒𝑓 − 𝑅1∙2 ∙ 𝑅2∙𝑅𝑒𝑓

𝑅2∙𝑅𝑒𝑓 − 𝑅1∙2 ∙ 𝑅1∙𝑅𝑒𝑓 + 𝑅1∙𝑅𝑒𝑓 − 𝑅1∙2 ∙ 𝑅2∙𝑅𝑒𝑓
 Eq. 4.7 

The optimal weighting factor is calculated through Eq. 4.7. Finally, the parent products are 

combined into a single product by using the calculated optimal weighting factor.  

4.4  Results and Discussion 

4.4.1 Global Optimal Weighting Factors 

The proposed correlation-based combination approach was applied to the remotely sensed 

soil moisture products from AMSR2 over the 2-year study period. As discussed, the volumetric 

water content in the topmost soil layer (0 - 0.07 m) of ERA-Interim was chosen as the reference 

data set. Based on this reference data, the global optimal weighting factors were determined 

using the approach presented in the previous section. The global map of the optimal weighting 

factors for the two remotely sensed soil moisture products from AMSR2 is presented in Figure 

4.2.  

The dark red color indicates that most the weight comes from the LPRM product whereas the 

dark blue color is where the JAXA product is most effective. For the in-between colors of the 

combination product are a more even mix of the two parent products. This global map of optimal 

weights provides information on the relative strengths (and weaknesses) of the remotely sensed 

 

Figure 4.2. The spatial distribution of the optimal weights for the JAXA and LPRM soil 

moisture products using ERA Interim as the reference. 
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soil moisture products against each other under the assumption that ERA-Interim reanalysis soil 

moisture represents the true soil moisture. As shown in Figure 4.2, the JAXA product has 

strengths over humid subtropical regions, such as the southeastern USA, northern India and the 

southeastern Asia. The LPRM product generally shows strengths in the more temperate areas 

which is in line with the results from previous studies (Crow et al., 2010; Dorigo et al., 2010).  

After applying the weighting factors, the two AMSR2 products are combined into a single 

product, and correlation coefficients of the combination product and the two parent products 

against the reference are presented in Figure 4.3. The correlation coefficients for the combined 

product are higher in all cases than either of the parent products (Figure 4.3d and e), 

demonstrating that the combination method assures improved (or at least equal) performance. 

 

Figure 4.3. Spatial distribution of Pearson’s correlation coefficients between the reference 

(ERA-Interim) and a) the combined product (RCOM), b) the JAXA product (RJAXA) and c) the 

LPRM product (RLPRM). Panel d) shows the differences in between correlation coefficients of 

the combined and JAXA products (RCOM minus RJAXA), and e), the combined and LPRM products 

(RCOM minus RLPRM). 
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The global mean of correlation coefficients is 0.35 for the JAXA product, 0.45 for the LPRM 

product and 0.52 for the combined product.  

Again, the results and actual values of the weights in Figure 4.2 and Figure 4.3 depend on the 

choice of reference data set which is an assumed truth. The optimal combination is considered 

independently for each location so a reference data set with smaller spatial domain or even at 

a point would still allow a combination product to be constructed. The presented combination 

approach is general enough to be applied with any other appropriate reference data set, which 

could be reanalysis, ground based or remotely sensed data sets, and should therefore be 

considered as a flexible tool that can be applied given a chosen reference data set. The analysis 

was repeated using MERRA-Land top soil layer soil moisture content (SFMC) - for a sensitivity 

analysis. As presented Table A4.1, it showed (somewhat) different performances in the temporal 

correlation (mean R) and weights (mean w) but these differences simply reflect the relative 

differences (and similarities) of the chosen references. Combination results using MERRA-Land 

as the reference are summarized in the appendix through Figure A4.5 to Figure A4.10. Also, 

results based on cross validating the combination product against a different reference product 

are presented through Figure A4.11 to Figure A4.14. Even in cross validation the proposed 

temporal combination approach provides superior results compared to either of the parent 

products. 

4.4.2 Evaluation Against In Situ Soil Moisture 

The global maps of correlation coefficients (Figure 4.3) show an improved match for the 

combined product compared to the two individual remotely sensed soil moisture products. Of 

interest is how the combination approach compares to an independent validation dataset. To 

achieve this goal, the two remotely sensed soil moisture products (JAXA and LPRM) and the 

combination were evaluated through the set of ground based observations from the 159 

stations. Figure 4.4 presents the evaluation results. 

The rationale of the scatterplot (Figure 4.4a) is that stations that fall below the 1:1 line (red 

line) indicate locations where the performance of the combined product is better than the 



Chapter 4  

63 | P a g e  

 

parent product. The dashed lines are fitted linear regressions for the JAXA (magenta) and LPRM 

(black) products and present the overall performance of the combined product versus the 

parent products. For both products, the combination is generally better than either product 

when considered over all the validation ground stations. In Figure 4.4b, the mean RJAXA is 0.35 

and the mean RLPRM is 0.56 over the in situ stations, and after combining the two AMSR2 products 

at each location, the mean RCOM is calculated as 0.56. The average improvements compared to 

the LPRM product are marginal but this is most likely due to the uneven distribution of the 

selected in situ stations. As shown in Figure 4.1, they are mostly distributed over the USA and 

the northern Europe where the LPRM product shows better performances than the JAXA 

product (Figure 4.2). If there was sufficient ground data in regions where the JAXA product 

shows better performance, such as the southeastern USA, northern India and the southeastern 

Asia, more balanced results would be expected. The mean weights applied to each product 

further support this finding. When using the ERA-Interim as the reference, the mean weight for 

the JAXA product over the grid cells with in situ stations is 0.24 (Figure 4.4c) whereas its global 

mean weight is 0.35. In addition, over the USA (30°N-50 °N, 70°W-125°W), the regional mean 

weight is 0.26 for the JAXA product. This shows that the JAXA performance is generally worse in 

the areas well sampled by the in situ data. More improvements are evident in the ascending 

 
Figure 4.4. Results for evaluating improvements in correlation coefficients through 

combinations. a) Scatter plot showing correlation coefficients of the JAXA and LPRM products 

(RJAXA and RLPRM on y-axis respectively) against correlation coefficients of the combined 

product (RCOM on x-axis). b) Boxplots for three sets of correlation coefficients for the JAXA, 

LPRM and combined products against the reference. c) Boxplot for weighting factors (w) 

from all in situ stations. 
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data where the LPRM product has relatively lower quality than the descending data (De Jeu et 

al., 2008). The results from the ascending data are presented and summarized in the appendix. 

The points above the 1:1 line in Figure 4.4a represent locations where the correlation with 

the validation data is degraded after the combination. This is a result of significant differences 

between the ERA-Interim data and the in situ data at these locations. In general, however, under 

both the calibration and validation settings the correlations for the combined product are 

improved compared to both the AMSR2 products.  

4.5  Conclusions 

In this study, a correlation-based combination approach was developed which maximizes the 

temporal correlation coefficient of soil moisture retrievals. This method was applied to two 

remotely sensed soil moisture products from the AMSR2 sensor over a 2-year study period. 

Based on the method developed here, the JAXA and LPRM soil moisture products were 

combined into a single product that showed superior results against the chosen reference soil 

moisture dataset after applying the optimal weighting factors (Figure 4.3). The spatial 

distribution of optimal weighting factors provides information on the relative strengths of the 

JAXA and LPRM products at the global scale. These weighting factors provide an important step 

forward in terms of how best to combine soil moisture products and improve over taking a 

simple average of the two products (Liu et al., 2011b). The performance of the combined 

product was validated against in situ observations from the ISMN. The combined product 

showed a significant improvement compared to the JAXA product and marginal improvements 

compared to the LPRM product. An important factor to consider is the unevenly distributed in 

situ stations for the evaluation due to the ISMN coverage. 

The actual weighting factors presented depend on the choice of reference data (ERA-Interim 

in this study) and different results would be obtained if a different reference data set was chosen. 

Sensitivity testing with MERRA-Land demonstrated that the method continues to perform well 

even with a different reference data set choice. The main contribution of this work is to provide 

a method that can be used to improve soil moisture products compared to any choice of 
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reference data set. And of particular relevance for soil moisture, the new method focuses on 

temporal correlations which have not previously considered in combination approaches. The 

comparison of the combined product using in situ stations showed that improvements in 

correlations were also obtained when considered in a validation setting. The uneven distribution 

of in situ stations due to the ISMN coverage led to small but consistent improvements for the 

combined product over the LPRM product and larger improvements for the JAXA product; a 

different set of in situ stations would lead to different results. 

Even though the new correlation-based combination approach has been demonstrated to 

operate robustly, there are a few future extensions that could provide even better combined 

products. First, as demonstrated with the MERRA-Land analyses it is useful to test different 

reference datasets to understand the sensitivities in the combined product. Second, the linear 

rescaling method (Draper et al., 2009) was used in this study to only adjust the mean and 

standard deviation of satellite soil moisture datasets against the reference. It may be worth 

investigating in future work whether other rescaling methods (e.g. Cumulative Distribution 

Function matching (Brocca et al., 2011; Liu et al., 2011b)) could lead to further improvements to 

the combined satellite product. The demonstration of the concept here has used just two parent 

datasets but there is no limit to the number of products that could be combined. In the context 

of soil moisture this is an exciting area of future research due to the number of satellite-based 

soil moisture products from different remote sensing techniques or different retrieval 

algorithms that are being developed. Any combined product would be expected to reflect the 

varying strengths of these techniques and algorithms. Another area for potential development 

is time-varying weights as well as the spatial weighting developed in this paper. Dynamic weights 

would take account of the time-varying performances of different soil moisture products due to 

the time-varying land surface features (e.g. soil temperature and vegetation). If weights can be 

updated in close to real-time such a development could be particularly useful for operational 

flood forecasting or other forecast problems. However, the reference datasets used for the 

linear combination (i.e. ERA-Interim and MERRA-Land) are not available at the time of soil 



Chapter 4  

66 | P a g e  

 

moisture retrievals from AMSR2, and it usually takes a few months to be available. Therefore, it 

is necessary to develop a method estimating optimal weights without such reference data but 

using other information available in near real-time such as regional vegetation and temperature. 

Lastly, it is required to investigate how the optimal weights are related to the important 

components in the retrieval algorithms such as soil temperature, surface roughness, vegetation 

and soil moisture status as mentioned in Chapter 3 . With this, data users or algorithms 

developers can understand better which product is preferred in time and space and why.  
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4.6  Appendix 

Derivation of equation for optimal weighting factor (Eq. 4.5) 

Two sets of unbiased soil moisture retrievals 𝜽𝟏 and 𝜽𝟐 (n×1) are linearly combined into 𝜽𝒄 

by applying a weighting factor w, 0 to 1. 

 𝜽𝒄 = 𝑤𝜽𝟏 + (1 − 𝑤)𝜽𝟐 (1) 

The Pearson correlation coefficient (R) between 𝜽𝒄 and a reference (𝜽𝑹) can be expressed as 

a function of w according to the definition of R and equation (3), and this is an optimization 

problem of the following function. 

 
Maximize 𝑅 =  𝑓(𝑤) =

𝐸[(𝜽𝒄 − 𝜇𝐶)(𝜽𝑹 − 𝜇𝑅)]

𝜎𝑐𝜎𝑅
 

Subject to 0≤ 𝑤 ≤ 1 

(2) 

Where 𝜇𝐶  and 𝜇𝑅 are the mean values, and 𝜎𝑐 and 𝜎𝑅 are the standard deviations of 𝜽𝒄 

and 𝜽𝑹 respectively. From equation (1),          

 

𝜇𝐶 = E[𝜽𝑪] 

      = E[𝑤𝜽𝟏 + (1 − 𝑤)𝜽𝟐] 

       = 𝑤𝜇1 + (1 − 𝑤)𝜇2 

(3) 

          

 

𝜎𝑐
2 = Var(𝜽𝑪) 

      = E[(𝜽𝒄 − 𝜇𝐶)2] 

      = E[𝜽𝑪
2] − 𝜇𝐶

𝟐 

      = E[(𝑤𝜽𝟏 + (1 − 𝑤)𝜽𝟐)2] −  (𝑤𝜇1 + (1 − 𝑤)𝜇2)2 

      = [Var(𝜽𝟏) + Var(𝜽𝟐) − 2𝐶𝑜𝑣(𝜽𝟏, 𝜽𝟐)] ∙ 𝑤2 − 2

∙ [𝑉𝑎𝑟(𝜽𝟏) − 𝐶𝑜𝑣(𝜽𝟏, 𝜽𝟐)] ∙ 𝑤 + Var(𝜽𝟐) 

(4) 

 

Therefore, from equation (3) and (4), 
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𝑓(𝑤) =
𝐸[(𝜽𝒄 − 𝜇𝐶)(𝜽𝑹 − 𝜇𝑅)]

𝜎𝑐𝜎𝑅
 

           

=  
[𝐶𝑜𝑣(𝜽𝟏, 𝜽𝑹) − 𝐶𝑜𝑣(𝜽𝟐, 𝜽𝑹)] ∙ 𝑤 + 𝐶𝑜𝑣(𝜽𝟐, 𝜽𝑹)

√
Var(𝜽𝑹) ∙ [Var(𝜽𝟏) + Var(𝜽𝟐) − 2𝐶𝑜𝑣(𝜽𝟏, 𝜽𝟐)] ∙ 𝑤2 …

−2 ∙ Var(𝜽𝑹) ∙ [𝑉𝑎𝑟(𝜽𝟏) − 𝐶𝑜𝑣(𝜽𝟏, 𝜽𝟐)] ∙ 𝑤 + Var(𝜽𝑹) ∙ Var(𝜽𝟐)

 

          =  
𝐴 ∙ 𝑤 + 𝐵

√𝐶 ∙ 𝑤2 + 𝐷 ∙ 𝑤 + 𝐸
 

(5) 

 

Where, 

A =  𝐶𝑜𝑣(𝜽𝟏, 𝜽𝑹) − 𝐶𝑜𝑣(𝜽𝟐, 𝜽𝑹) 

B = 𝐶𝑜𝑣(𝜽𝟐, 𝜽𝑹) 

C = Var(𝜽𝑹) ∙ [Var(𝜽𝟏) + Var(𝜽𝟐) − 2𝐶𝑜𝑣(𝜽𝟏, 𝜽𝟐)] 

D = −2 ∙ Var(𝜽𝑹) ∙ [𝑉𝑎𝑟(𝜽𝟏) − 𝐶𝑜𝑣(𝜽𝟏, 𝜽𝟐)] 

E = Var(𝜽𝑹) ∙ Var(𝜽𝟐) 

 

Differentiating equation (5) with respect to w,          

 𝑓′(𝑤) =
𝐴

√𝐶 ∙ 𝑤2 + 𝐷 ∙ 𝑤 + 𝐸
−

(𝐵 + 𝐴 ∙ 𝑤)(𝐷 + 2 ∙ 𝐶 ∙ 𝑤)

2 ∙ (𝐶 ∙ 𝑤2 + 𝐷 ∙ 𝑤 + 𝐸)2/3
 (6) 

 

Therefore, the optimal weighting factor is calculated by letting equation (6) 0 and simplified as 

 

𝑤 =
2 ∙ 𝐴 ∙ 𝐸 − 𝐵 ∙ 𝐷

2 ∙ 𝐵 ∙ 𝐶 − 𝐴 ∙ 𝐷
 

    =
𝜎2(𝜌1𝑅 − 𝜌12 ∙ 𝜌2𝑅)

𝜎1(𝜌2𝑅 − 𝜌12 ∙ 𝜌1𝑅) + 𝜎2(𝜌1𝑅 − 𝜌12 ∙ 𝜌2𝑅)
 

(7) 
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Table A4.1. Combination results in terms of mean R and w from the ascending and descending 

data with ERA-Interim and MERRA-Land as references. Generally, the combination performance 

is more prominent for the JAXA and the ascending data than the LPRM and the descending data 

Scale Statistics Product 
Descending Ascending 

ERA-Interim MERRA-Land ERA-Interim MERRA-Land 

Global 

Mean R 

Combined 0.52 0.51 0.50 0.43 

JAXA 0.35 0.31 0.33 0.26 

LPRM 0.45 0.44 0.36 0.30 

Mean w 
JAXA 0.37 0.31 0.46 0.43 

LPRM 0.63 0.69 0.54 0.57 

In situ 
stations 

Mean R 

Combined 0.56 0.45 0.53 0.52 

JAXA 0.35 0.34 0.34 0.34 

LPRM 0.56 0.45 0.49 0.49 

Mean w 
JAXA 0.24 0.22 0.26 0.29 

LPRM 0.76 0.78 0.74 0.71 
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Table A4.2. Cross-validation results (i.e. correlation coefficients) from combination using the 

ascending and descending data with ERA-Interim and MERRA-Land which are interchangeably 

used for combination and validation. 

Satellite path Descending Ascending 

Combination 
Reference 

ERA-Interim MERRA-Land ERA-Interim MERRA-Land 

Validation 
Reference 

MERRA-Land ERA-Interim MERRA-Land ERA-Interim 

Combined 0.47 0.49 0.39 0.46 

JAXA 0.31 0.35 0.26 0.33 

LPRM 0.44 0.45 0.30 0.36 

Remark Figure A4.11 Figure A4.12 Figure A4.13 Figure A4.14 
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Figure A4.1. Locations of 164 in situ stations from 8 networks, selected from the ISMN, that were 

used for evaluating performances of combination using the soil moisture retrievals from the day-

time observations (ascending satellite path). The reason for the different number of stations 

compared to Figure 4.1 is that number of observations at day-time is generally larger than ones 

at night-time due to moderately higher temperature reducing data mask. 

 

 

Figure A4.2. The spatial distribution of the optimal weights for the JAXA and LPRM soil moisture 

products at the day-time (ascending satellite path) using ERA-Interim soil water contents level 1 

as the reference.  
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Figure A4.3. Results of combination using datasets at the ascending satellite path with ERA-

Interim soil water contents level 1 as the reference: Spatial distribution of Pearson’s correlation 

coefficients between the reference and a) the combined product (RCOM), b) the JAXA product 

(RJAXA) and c) the LPRM product (RLPRM). Where, the global mean of RCOM is 0.50, RJAXA, 0.33 and 

RLPRM, 0.36 respectively. Panel d) shows the differences in between correlation coefficients of 

the combined and JAXA products (RCOM minus RJAXA), and e), the combined and LPRM products 

(RCOM minus RLPRM). 
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Figure A4.4. Results for evaluating improvements in correlation coefficients through 

combinations of data at the ascending satellite path using ERA-Interim soil water contents level 

1 as the reference. a) Scatter plot showing correlation coefficients of the JAXA and LPRM 

products (RJAXA and RLPRM on y-axis respectively) against correlation coefficients of the combined 

product (RCOM on x-axis). b) Boxplots for three sets of correlation coefficients for the JAXA, LPRM 

and combined products against the reference. Where, the mean of correlation coefficients for 

the JAXA product is 0.34, the LPRM product, 0.49 and the combined product, 0.53 respectively. 

c) Boxplot for weighting factors (w) from all in situ stations. Where, the mean of weighting 

factors is 0.26 for the JAXA product and 0.74 for the LPRM product. 

 

 
Figure A4.5. The spatial distribution of the optimal weights for the JAXA and LPRM soil moisture 

products at the night-time (descending satellite path) using MERRA-Land top soil layer soil 

moisture consent as the reference.  
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Figure A4.6. Results of combination using datasets at the descending satellite path with MERRA-

Land top soil layer soil moisture content as the reference: Spatial distribution of Pearson’s 

correlation coefficients between the reference and a) the combined product (RCOM), b) the JAXA 

product (RJAXA) and c) the LPRM product (RLPRM). Where, the global mean of RCOM is 0.51, RJAXA, 

0.31 and RLPRM, 0.44 respectively. Panel d) shows the differences in between correlation 

coefficients of the combined and JAXA products (RCOM minus RJAXA), and e), the combined and 

LPRM products (RCOM minus RLPRM). 
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Figure A4.7. Results for evaluating improvements in correlation coefficients through 

combinations of data at descending satellite path using MERRA-Land top soil layer soil moisture 

content as the reference. a) Scatter plot showing correlation coefficients of the JAXA and LPRM 

products (RJAXA and RLPRM on y-axis respectively) against correlation coefficients of the combined 

product (RCOM on x-axis). b) Boxplots for three sets of correlation coefficients for the JAXA, LPRM 

and combined products against the reference. Where, the mean of correlation coefficients for 

the JAXA product is 0.34, the LPRM product, 0.45 and the combined product, 0.45 respectively. 

c) Boxplot for weighting factors (w) from all in situ stations. Where, the mean of weighting 

factors is 0.22 for the JAXA product and 0.78 for the LPRM product. 

 

 
Figure A4.8. The spatial distribution of the optimal weights for the JAXA and LPRM soil moisture 

products at the day-time (ascending satellite path) using MERRA-Land top soil layer soil moisture 

consent as the reference. 
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Figure A4.9. Results of combination using datasets at the ascending satellite path with MERRA-

Land top soil layer soil moisture content as the reference: Spatial distribution of Pearson’s 

correlation coefficients between the reference and a) the combined product (RCOM), b) the JAXA 

product (RJAXA) and c) the LPRM product (RLPRM). Where, the global mean of RCOM is 0.43, RJAXA, 

0.26 and RLPRM, 0.30 respectively. Panel d) shows the differences in between correlation 

coefficients of the combined and JAXA products (RCOM minus RJAXA), and e), the combined and 

LPRM products (RCOM minus RLPRM). 
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Figure A4.10. Results for evaluating improvements in correlation coefficients through 

combinations of data at descending satellite path using MERRA-Land top soil layer soil moisture 

content as the reference. a) Scatter plot showing correlation coefficients of the JAXA and LPRM 

products (RJAXA and RLPRM on y-axis respectively) against correlation coefficients of the combined 

product (RCOM on x-axis). b) Boxplots for three sets of correlation coefficients for the JAXA, LPRM 

and combined products against the reference. Where, the mean of correlation coefficients for 

the JAXA product is 0.34, the LPRM product, 0.49 and the combined product, 0.52 respectively. 

c) Boxplot for weighting factors (w) from all in situ stations. Where, the mean of weighting 

factors is 0.29 for the JAXA product and 0.71 for the LPRM product. 
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Figure A4.11. Cross-validation results of combination using data at the descending satellite path 

with ERA-Interim soil water contents level 1 as the reference: Spatial distribution of Pearson’s 

correlation coefficients between MERRA-Land top soil layer soil moisture content and a) the 

combined product (RCOM), b) the JAXA product (RJAXA) and c) the LPRM product (RLPRM). Where, 

the global mean of RCOM is 0.47, RJAXA, 0.31 and RLPRM, 0.44 respectively. Panel d) shows the 

differences in between correlation coefficients of the combined and JAXA products (RCOM minus 

RJAXA), and e), the combined and LPRM products (RCOM minus RLPRM).  
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Figure A4.12. Cross-validation results of combination using data at the descending satellite path 

with MERRA-Land top soil layer soil moisture content as the reference: Spatial distribution of 

Pearson’s correlation coefficients between ERA-Interim soil water contents level 1 and a) the 

combined product (RCOM), b) the JAXA product (RJAXA) and c) the LPRM product (RLPRM). Where, 

the global mean of RCOM is 0.49, RJAXA, 0.35 and RLPRM, 0.45 respectively. Panel d) shows the 

differences in between correlation coefficients of the combined and JAXA products (RCOM minus 

RJAXA), and e), the combined and LPRM products (RCOM minus RLPRM). 
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Figure A4.13. Cross-validation results of combination using data at the ascending satellite path 

with ERA-Interim soil water contents level 1 as the reference: Spatial distribution of Pearson’s 

correlation coefficients between MERRA-Land top soil layer soil moisture content and a) the 

combined product (RCOM), b) the JAXA product (RJAXA) and c) the LPRM product (RLPRM). Where, 

the global mean of RCOM is 0.39, RJAXA, 0.26 and RLPRM, 0.30 respectively. Panel d) shows the 

differences in between correlation coefficients of the combined and JAXA products (RCOM minus 

RJAXA), and e), the combined and LPRM products (RCOM minus RLPRM). 
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Figure A4.14. Cross-validation results of combination using data at the ascending satellite path 

with MERRA-Land top soil layer soil moisture content as the reference: Spatial distribution of 

Pearson’s correlation coefficients between ERA-Interim soil water contents level 1 and a) the 

combined product (RCOM), b) the JAXA product (RJAXA) and c) the LPRM product (RLPRM). Where, 

the global mean of RCOM is 0.46, RJAXA, 0.33 and RLPRM, 0.36 respectively. Panel d) shows the 

differences in between correlation coefficients of the combined and JAXA products (RCOM minus 

RJAXA), and e), the combined and LPRM products (RCOM minus RLPRM). 
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Chapter 5  Combining Multiple Soil Moisture Retrievals Based 

on Maximizing Temporal Correlation: Dynamic Approach 

This chapter improved the static linear combination method of Chapter 4 to allow for a non-static 

or nonstationary model combination as the basis for improving remotely-sensed surface soil 

moisture. Previous research had noted that two soil moisture products retrieved using the JAXA 

and LPRM algorithms from the same AMSR2 sensor are spatially complementary in terms of R 

against a suitable reference over a fixed period. Accordingly, a linear combination was proposed 

to maximize R using a set of spatially-varying, but temporally-fixed weights. Even though this 

approach showed promising results, there was room for further improvements, using non-static 

or dynamic weights that take account of the time-varying nature of the combination algorithm 

being approximated. The dynamic weighting was achieved by using a moving window. A number 

of different window sizes was investigated. The optimal weighting factors were determined for 

the data lying within the moving window and then used to dynamically combine the two parent 

products. Improved performance was shown for the dynamically-combined product over the 

static linear combination. Generally, shorter time windows outperformed the static approach, 

and a 60-day time window was suggested to be the optimum. Results were validated against in 

situ measurements collected from 124 stations over different continents. The mean R of the 

dynamically-combined products was found to be 0.57 and 0.62 for the cases using the European 

Centre for ERA-Interim and MERRA-Land reanalysis products as the reference, respectively, 

outperforming the statically-combined products (0.55 and 0.54). 

This chapter is an edited version of: Kim, S.; Kim, S.; Parinussa, R.; Liu, Y.; Johnson, F.; Sharma, 

A., Merging Alternate Remotely-Sensed Soil Moisture Retrievals Using a Non-Static Model 

Combination Approach. Remote Sensing 2016, 8 (6), 518. 
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5.1  Introduction 

This chapter is an extension of the previous combination scheme described in Chapter 4 , and 

the main objective is to provide further improvements of the performance of the combination 

approach that was presented. As discussed in the previous chapters, land surface features 

affecting the soil moisture retrieval (i.e. soil temperature and vegetation) vary through time and 

accordingly can cause temporally different performances. It is focused here on dynamic weights 

that take account of the time-varying performances of the different soil moisture products. The 

previous static combination uses the entire timeseries of data to calculate a single, constant 

weight for each point in space. The dynamic combination aims to use only a part of the 

timeseries, which has more useful information for representing temporal variability at a point in 

time. This has been shown to be successful in other applications; for example, Terui and van Dijk 

(2002) applied a time-varying weight for combining timeseries, which is the sum of the weight 

at the previous time step and an error following a Gaussian distribution. The work in Chowdhury 

and Sharma (2009) used time-varying error-based weights for combining river flows in arid areas. 

In addition, Khan et al. (2014) combined five global sea surface temperature forecasts by 

applying seasonally-based weights. The contribution of this study is to use time-varying weights 

to maximize the correlation of soil moisture products against a chosen reference. A second aim 

of the study is to determine the optimal size of the time window to calculate the combination 

weights using data at a daily time step. 

Datasets used in this study, as well as data preprocessing are described in 5.2. The 

methodology for the dynamic combination is presented in 5.3. In 5.4, results from the global 

experiments are presented, as well as further results from a simulation experiment. Finally, the 

combined products are compared against in situ observations. In 5.5 and 5.6, the results are 

summarized and discussed, and suggestions are put forward for future research. 

5.2  Data and Processing 
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5.2.1 Data 

The JAXA (ver. 1.0) and LPRM soil moisture products retrieved from the X-band 10.7 GHz 

brightness temperature, available from both algorithms. It is not limited to use the same 

frequency for both products when combining them. As it is known that night-time has more 

favorable conditions for soil moisture retrieval (De Jeu et al., 2008), only soil moisture products 

from descending overpasses (01:30 a.m. equatorial overpass time) were used. Finally, the study 

was done over a two-year study period (1 January 2013–31 December 2014). The additional data 

prior to and after the analyzed period are used in the time windows for the dynamic 

combinations. All analyses were performed at the standard spatial resolution of 0.25° 

(approximately 25 km). 

A reference soil moisture dataset is required in the combination approach described in 

Chapter 4 , as well as in the next section of this paper and is assumed to represent ground truth 

and the target for combining the products. In this study, it was also used as the reference to 

determine the optimal window size globally, as well as to check the performance of the dynamic 

combination approach the two different reanalysis products i.e. the volumetric water content 

of the topmost layer (0–0.07 m) from ERA-Interim and volumetric soil moisture content in the 

top layer (0–0.02 m) of MERRA-Land. Daily values at each grid cell were selected from the series 

of the reanalysis products. The selected value is the one that is temporally closest to the AMSR2 

scan time over the grid on the day. 

To independently evaluate the improvements in the combined product compared to the 

individual parent product, in situ measurements from the ISMN were used. The AMSR2 scan 

time was also applied to select daily observations that are closest to the AMSR2 observations. 

To ensure that the in situ data are of high quality for validation, the same checks and filters with 

Chapter 4 were applied to the datasets used in this study of which main characteristics are 

summarized along the with data sources in Table 5.1. 
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5.2.2 Data Preprocessing 

The data preprocessing steps in 4.2.2 were applied to all the remote sensing datasets, 

reanalysis and in situ observations. Only in situ stations that have more than 100 paired 

observations with the RS products were included to ensure statistical robustness. Thus, 124 

Table 5.1. Details of datasets used in this study. 

Data 
Source 

Dataset 
Temporal 

Resolution 
Spatial 

Resolution 
Units 

AMSR2-
JAXA 

Level 3 geophysical parameter SMC Daily 0.25° m3/m3 

AMSR2-
LPRM 

Level 3 Surface Soil Moisture X-band Daily 0.25° m3/m3 

AMSR2-
LPRM 

Vegetation optical depth C-band Daily 0.25° - 

AMSR2 Scan time Daily 0.25° Seconds 

ERA-
Interim 

Soil water contents Level 
(1 0–0.07 m depth) 

6 hours 0.25° m3/m3 

ERA-
Interim 

Soil temperature Level 
(1 0–0.07 m depth) 

6 hours 0.25° K 

MERRA-
Land 

Top soil layer soil moisture consent 
(SFMC) 

Hourly 
0.25°  

Resampled 
m3/m3 

ISMN 
In situ measured soil moisture from 

124 stations in 10 networks 
Hourly Point m3/m3 

Sa CCI 
Topographic complexity, wetland 

fraction 
- 0.25° % 

 

 

Figure 5.1. Locations of 124 ground stations from 10 networks used for the comparison with 

combined products. 
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stations from 10 networks were used for evaluation purposes, and their spatial distribution is 

presented in Figure 5.1. Even though such strict filtering processes were applied, it should be 

noted that there are likely to still be systematic differences among the datasets (Draper et al., 

2009). 

5.3  Methodology 

The static approach in Chapter 4 that uses the entire datasets to calculate the weights will be 

further developed by using a dynamic segment of the datasets instead. This is based on the 

premise that different data segments are affected in different respects resulting from the system 

state being measured. Hence, one can assume that if this state-dependent behavior can be 

identified, combination weights may favor one retrieval algorithm over another for alternate 

states. This provides the basis for the dynamic combination approach presented here. The 

dynamic data segment is likely more dependent on and/or correlated with a spatiotemporal 

point to be combined and so is regarded to have more related information for calculating 

weights. For this, it is hypothesized that the information in a narrower range around the 

spatiotemporal point is more effective and sensitive for explaining temporal variability than the 

entire dataset. In this case, it is important to appropriately define the range of datasets by 

considering dimensional nearness to the point (Sharma & Mehrotra, 2014).  

 

Figure 5.2. Schematic diagram for dynamic linear combination. T denotes the period defined 

by the window (i.e., T = (t − N/2) :(t + N/2)). Therefore, a bold symbol that has T as its subscript 

means a vector in the period T, and a non-bold symbol with t as the subscript represents a 

value at the point in time t. 
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In this study, a temporally-moving window, which is centered on the point of interest at time 

t and has a size N-days, is applied to define the temporal nearness. As presented in Figure 5.2, 

the dynamic linear combination uses a part of the datasets in a period T by the moving window, 

to calculate the optimal weight for the point in time t (𝑤𝑡), and the linear combinations are 

successively performed at points in time by using the calculated time-varying weights. 

5.4  Results 

5.4.1 Global Data Combination with Various Scenarios 

For most locations, timeseries of the AMSR2 products are generally not continuous over the 

seasons due to freezing conditions and the revisit pattern of AMSR2. This could directly result in 

a shortage of observations within a moving window leading to non-significant values of R. For 

this reason, a minimum number of observations was determined based on a two-tailed t-test 

with a significance level (α) for R as 

 𝑡𝛼/2 = 𝑅 ∙ √
𝑛 − 2

1 − 𝑅2
 Eq. 5.1 

In this study, α = 0.05, the corresponding 𝑡𝛼/2 = 𝑡0.025 = 2.020 and a target R = 0.4 were used, 

and the minimum number of observations (n) is determined to be 25. As it approximately needs  

50–75 days for acquiring the minimum observations (i.e., 25) due to the revisit time of AMSR2  

(i.e., 2–3 days), 60 was set as the minimum window size (N) for the dynamic combination. 

The initial experiment starts with using the volumetric water content of ERA-Interim as the 

assumed reference dataset. Both AMSR2 soil moisture products were then combined using the 

static combination and the dynamic combination with a range of window sizes (N = 60, 90 and 

120 days). Then, the combined products were compared to the reference dataset. The 

combination results are presented in Figure 5.3a–f, which show global maps of R of the parent 

and combined products against the reference. Additionally, the box plot in Figure 5.3g shows 

the distributions of the global R for the various scenarios (see Figure A5.1 for results using 

MERRA-Land as the reference). 
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The spatial distributions of R tend to be improved (i.e., more bluish colors) from the parent 

(Figure 5.3a, b) to statically- (Figure 5.3c) and dynamically-combined products (Figure 5.3d–f), 

and the tendency is clearly shown in the box plot of Figure 5.3g. The dynamically-combined 

products are consistently better than both parents and the statically-combined product. This 

result supports the hypothesis that data within a specific period provide better information for 

calculating weights maximizing R. It is also clear that the shorter window sizes in the dynamic 

combination outperform the longer window sizes. Hence, the N60 window size was selected for 

further analysis. In other words, the linear combination makes the parent products be close to 

the reference dataset in terms of temporal correlation, and the dynamic approach enforces the 

function with a shorter window size. To assess the sensitivity of this finding to the choice of 

reference dataset, this N60 scenario was again applied using the top soil moisture layer of 

MERRA-Land as the reference dataset. Figure 5.4 presents the differences of this N60 

experiment using ERA-Interim (top panels) and MERRA-Land (bottom panels) as the reference, 

respectively. 

 

Figure 5.3. Results from experiments that uses ERA-Interim as the reference for various 

window sizes, N60, N90 and N120. Each panel shows the R between the reference and (a) 

JAXA, (b) LPRM, (c) static, (d) N60, (e) N90 and (f) N120; the more bluish colours in the maps 

indicate higher R against the reference; the overall performance for the various scenarios is 

summarized in the boxplot (g). 
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As shown in Figure 5.4a, c, the two dynamic products lead to improvements at different 

locations due to the different spatial patterns in agreement between each reference dataset 

and the parent products. Thus, the spatial distribution of the averaged weighting factors used 

for the dynamic combination is also different (Figure 5.4b, d). The differences are prominently 

contrasted over the desert regions, such as the Sahara, Middle East and central Australia. For 

comparison, results from the N90 and N120 are shown in Figure A5.2 and Figure A5.3, and global 

maps are also presented in Figure A5.4 showing standard deviations of optimal weights from 

the two references (i.e. ERA-Interim and MERRA-Land) and three window sizes (i.e. N60, N90 

and N120). To better understand these differences and how the chosen reference interacts with 

the parent products, an additional experiment is now setup in a controlled environment using 

simulated datasets. 

 

Figure 5.4. Comparison between combined soil moisture products using ERA-Interim (top 

panels) and MERRA-Land (bottom panels) as the reference, respectively. (a, c) The 

differences in R between the static and N60 products against each reference (i.e., R of N60 

minus R of static); and (b, d) the mean weights that were used for the dynamic combination 

using each reference over the two-year study period. 
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5.4.2 A Simulation Experiment 

The experiments using actual datasets were performed in the previous section 5.4.1 and two 

findings for the static and dynamic approaches were explained; 1) The dynamically combined 

products are consistently better than both parents and the statically combined product; 2) The 

shorter window sizes in the dynamic combination outperform the longer window sizes.  

To corroborate the findings in terms of the parent product quality and the window size N, the 

dynamic linear combination was assessed against the static approach in a simulation experiment 

that uses three periodical datasets generated by 

 𝜽 = 𝐴 ∙ sin(2𝜋 ∙ 𝐹 ∙ 𝒕) + 𝑀 Eq. 5.2 

where 𝜽 is simulated soil moisture (m3/m3), A is amplitude 0.2 (m3/m3), F is frequency 1/365, t 

is a point in time (daily) and M is mean soil moisture (0.4 m3/m3).  

The parameters used in Eq. 5.2 were chosen for the simulated datasets to be within the 

plausible soil moisture range (0–0.6 m3/m3, (Dorigo et al., 2011)). From the three generated 

datasets, two were designated as the parent products, and the remaining one was chosen to be 

the reference. To introduce different correlation coefficients among the parent products and 

the reference, which eventually govern the optimal weights, randomly-generated white noise 

from −0.2 to +0.2 was added to each of the parent products. Next, an integer between 30 and 

360 was also randomly selected for the size of moving window (N). After that, a series of dynamic 

combinations and a static combination were performed using data equivalent to a two-year 

period, and the correlations between the dynamically- (Rdyn) and statically- (Rsta) combined 

products were calculated and compared. 

A correlation-based Euclidean distance was calculated for each simulation to represent the 

similarity/difference between the parent products and the reference. As there are two parent 

products for the combination, they are best summarized as a vector of correlations, (R1, R2) T, 

and then, the Euclidean distance (ξ) is calculated as 
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 ξ = sqrt((1 − R1)2 + (1 − R2)2) Eq. 5.3 

Through this procedure, 1000 simulations were performed, and the results provide further 

information on the performance of the dynamic combination approach in terms of the window 

size (N) and also the influence on the results of the quality of the parent product(s).  

The results from the simulation experiment show that: 1) the dynamic performance is 

consistently better than that of the static approach (Figure 5.5a); and 2) short window sizes 

provide the largest contrast between the static and dynamic approaches. Sufficiently, large 

window sizes will yield identical results as the static combination approach (Figure 5.5b). These 

results are in line with the results obtained through the global datasets, as was summarized in 

Figure 5.3. Figure 5.5a also shows that both performances tend to decrease with increasing 

Euclidean distance, in which the two linear regression lines imply strong dependence of both 

combination performances on initial quality of parent products. 

The final performance of the combination depends on the relative differences between the 

selected reference and the parent products. Therefore, an important consideration is that the 

quality of the combined product heavily relies on the quality of the reference that is assumed to 

 
Figure 5.5. Results from the simulation experiment. (a) The x-axis indicates Euclidean 

distances (ξ) calculated by Eq. 5.3, representing the qualities of the parent products, and the 

y-axis, Rdyn or Rsta. The dashed two lines present the linear regression of all results from 

the dynamic and static combinations, respectively. (b) The x-axis indicates N sizes, the y-axis 

differences between Rdyn and Rsta (i.e., Rdyn − Rsta). 
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represent the truth. Therefore, it is necessary to further investigate how the reference 

difference affects the combination performances from the static and dynamic approaches. To 

better understand the associated qualities of the different products, they were compared 

against in situ measurements from the ISMN. 

5.4.3 Comparison Against In Situ Observations 

In this section, the dynamically-combined products with various scenarios are compared 

against in situ measurements from the ISMN, demonstrating how much the results rely on the 

quality of the reference dataset. The R between the in situ measurements and the adopted 

reference dataset demonstrates the impact of the R on the combination approach. For this 

comparison, the (N60) dynamic weighting approach was compared to the static weighting 

approach, as well as the parent products (Figure 5.6). 

Data points in Figure 5.6 that are below the 1:1 line represent locations where the dynamic 

approach performed better than the static one. The overall relation between these approaches 

for all sites in the ISMN is represented by the linear regression lines. Those regression lines show 

that the performance of the dynamic combination is generally better than the static approach, 

particularly when the initial R between the ISMN dataset and the reference data is high R > 0.4. 

An interesting feature obvious in Figure 5.6 is the qualitative differences in static and dynamic 

combination performances, where agreement between the reference and in situ measurements 

was expressed with colors from red to blue (0–1). The superiority in the dynamic approach is 

obvious when there is a better agreement between the reference and in situ measurements 

(bluish marks under the 1:1 line). However, degraded performance for the dynamic approach is 

observed when the reference and in situ datasets do not agree (reddish marks above the 1:1 

line). This suggests that the reference quality is important to consider when applying the 

dynamic approach. The dynamically-combined product tends to be closer to the reference; 

therefore, if the reference data are different from the in situ data, then the dynamic product will 

tend to deviate more from the in situ data, as well. In the case of ERA-Interim, the mean R of the 

static combinations is 0.55, which is similar to the LPRM product (0.55), but the dynamically- 
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combined product (0.57) outperforms both parent products. For the case of MERRA-Land, the 

dynamic approach provides better performance (0.62) than the static approach (0.54) and all 

other products including the parent. From the results, it would be possible to select the static or 

dynamic product based on a threshold for the reference. In other words, it could be better to 

choose the static product if the reference quality is lower than the threshold or uncertain, which 

is further discussed in the next section. 

 

Figure 5.6. (a) Box plots showing combination performances against in-situ measurements 

with the N60 and the two references. The labels on the x-axis indicate parent or statically-

/dynamically-combined products with the references, and the y-axis R between the product 

and the in-situ measurements. The value in each box is the mean of R. Comparison against 

in-situ measurements from the ISMN for dynamically combined products using the N60 and 

(b) ERA-Interim and (c) MERRA-Land as the reference, respectively. The x-axis presents R 

between a dynamic product and the in-situ measurements from a station, the y-axis R 

between a static product and the in situ measurements. 
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As an example of the static and dynamic combination behavior, Figure 5.7 shows combination 

results using MERRA-Land as the reference at two ground stations where the dynamic approach 

outperforms most the static approach among the 124 stations. 

In the case of Sandy Ridge station (Figure 5.7a), the static weight is 0.98, and R between the 

statically-combined product and in situ measurements is 0.27. However, it sharply increases to 

0.74 when applying the time-varying weights. For the case of Sandstone-6-W station (Figure 

 
Figure 5.7. Dynamic and static combination results using MERRA-Land as the reference at (a) 

Sandy Ridge station in Soil Climate Analysis Network and (b) Sandstone-6-W station in U.S. 

Climate Reference Network. Each panel shows static/dynamic weights (top), as well as 

timeseries of statically- and dynamically-combined soil moisture products (bottom). 
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5.7a), the static weight is 0.43, and R between the statically-/dynamically-combined product and 

in situ measurements is 0.36 and 0.78, respectively. 

5.4.4 Influence of the Quality of the Parent Products and Reference 

The correlation-based Euclidean distance, used to assess the quality of the simulated datasets 

in the section 5.4.2, was extended to assess the quality of the parent products and reference 

against the in situ measurements. 

Eq. 5.3 is expanded to include three products (i.e., two parent products and the reference 

dataset), and the vector of correlations at each station against in situ measurements is defined 

as (Rinsitu-JAXA, Rinsitu-LPRM, Rinsitu-ref)T. Therefore, the extended Euclidean distance (ξ) is determined 

by: 

At every station, R was determined through the static and dynamic approaches against 

corresponding in situ measurements (Rinsitu−sta and Rinsitu−dyn) and was plotted against the 

Euclidean distances (Figure 5.8).  

 
ξ = sqrt((1 − Rinsitu−JAXA)

2
+ (1 − Rinsitu−LPRM)2

+ (1 − Rinsitu−ref)
2) 

Eq. 5.4 

 

Figure 5.8. Combination performances with the quality of parent products and reference 

against in situ measurements. The x-axis for each panel presents the Euclidean distances (ξ) 

calculated by Equation (8), and the y-axis Rinsitu−sta or Rinsitu−dyn. Linear regression lines 

represent the tendencies of both cases.  
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The dynamic approach shows generally better performances than the static approach, and 

this tendency is more conspicuous for MERRA-Land (Figure 5.8b) than for ERA-Interim (Figure 

5.8a). It is also shown that Rinsitu−sta and Rinsitu−dyn tend to decrease with increases of ξ, 

which means that a good agreement between the parent products and reference is an important 

precondition for both combination methods to provide improvements over the parent. As 

before, it is necessary to consider the quality of available reference datasets when deciding 

which one to use for these combination approaches. 

Figure 5.9 shows all Rinsitu−sta  and Rinsitu−dyn  from the two combination scenarios 

plotted against Rinsitu−ref. The performance of the dynamic combination is clearly better than 

those of the static combination with higher Rinsitu−ref . When Rinsitu−ref  is around 0.6 or 

greater, then the dynamic combination is the superior approach. This suggests that a threshold 

value for Rinsitu−ref  can be used to select when to use the dynamic or static combination 

approach. Namely, the static product is selected when Rinsitu−ref at a station is equal to or less 

than the threshold and vice versa, even though such approach can be only applied in areas 

 
Figure 5.9. Combination performances with reference quality against in situ measurements. 

The x-axis presents R between in situ measurements and the references (Rinsitu−ref), the y-

axis R between in situ measurements and statically-/dynamically-combined products 

(Rinsitu−sta and Rinsitu−dyn). Linear regression lines are added for representing the average 

tendencies of both cases. 
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where in situ measurements are available. That is to say, it can be optionally determined 

whether or not to apply the dynamic combination approach when a validation for the reference 

is supported. For example, Albergel et al. (2012a) evaluated ERA-Interim soil moisture using in 

situ measurements from stations, and based on the results, one can have a basis for applying 

the static or dynamic combination approach over certain regions. In addition, the suggestion can 

be extended through large verification techniques, such as triple collocation (Gruber et al., 2016). 

5.5  Discussion 

This study presented an approach to dynamically combine RS soil moisture products through 

a linear combination approach that maximizes R. The rationale of the proposed method is to use 

information from two parent products that are spatially and temporally complementary to each 

other. These parent products were linearly combined by applying a set of weights, which are 

governed by the correlation among the parent products and a reference. 

For this, it was hypothesized that datasets within a temporal moving window, centered 

around a point in time and having size N, provide better information to calculate the optimal 

weight and lead to a better combination. Accordingly, it applied to the experiments using the 

two AMSR2 soil moisture products and the simulated datasets. The experiments led to three 

main conclusions about the dynamic combination methodology. 1) The dynamically-combined 

product is consistently better than the statically-combined and parent products when the 

reference quality is fairly good (R > 0.6); 2) better performances came out with shorter window 

sizes for the dynamic combination, and the N60 was selected as the optimum for combining 

these two AMSR2 products; 3) the performances of the dynamic and static approaches tend to 

decrease with the decreases of parent product quality against the reference. 

In reality, the quality of a chosen reference is spatiotemporally variable (Dee et al., 2011; 

Reichle et al., 2011), and this is likely to be the most important issue to be considered for 

combining parent products. To investigate this, experiments with two combination scenarios, 

the N60 with two references (i.e., ERA-Interim and MERRA-Land), were performed and 

compared against the assumed truth, i.e., in situ measurements from the ISMN. The results 
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showed that the performance indeed relies on reference quality and a good quality of reference 

is essential for a good performance from the dynamic approach. It was found that R between a 

reference and in situ data should be at least moderately positive (0.6). When the correlations 

are lower, the static combination is likely to be a more reliable choice based on the results from 

Figure 5.9. 

5.6  Conclusions 

 Based on the results, there are a few possibilities for future extensions. First, the 

spatiotemporally-varying weights could provide information to improve the parent products, as 

well as the retrieval algorithms. The results here provide the JAXA and LPRM algorithms with 

clues on promising areas for further improvement by highlighting times of year and areas of the 

globe where the other product has superior performance. In addition, the results about the 

quality of the reference dataset highlight improvements that could be made in these products 

(Albergel et al., 2012a; Balsamo et al., 2015). 

The combination scheme can be used with more than two parent products, so that it can 

reflect varying strengths resulting from the different techniques or retrieval algorithms. In this 

case, products from the same sensor but different frequencies or algorithms are preferred. This 

is because the products will then have the same swath pattern, leading to a good number of 

paired observations and the same scan time, so that the weather conditions are constant. A 

possible approach to combine multiple satellite-derived products from various sensors, which 

have different swath patterns and scanning times, is applying the methodology to datasets at 

coarser temporal resolutions (e.g., weekly) by averaging the original datasets at a finer temporal 

resolution. Lastly, it should be emphasized that the presented combination scheme is applicable 

to any spatiotemporal dataset where a reference dataset is available. From the results in this 

study, the following general guidelines are suggested for other applications of the dynamic linear 

combination. A minimum window size is recommended based on statistical significance to 

calculate the optimal weights. Secondly, the quality of a reference should be supported through 

a validation procedure to decide whether to accept or not the dynamically-combined product. 
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5.7  Appendix 

 

Figure A5.1. Results from experiments that uses MERRA-Land as the reference for various 

window sizes (N60, N90 and N120). Each panel shows the R between the reference and (a) JAXA, 

(b) LPRM, (c) static, (d) N60, (e) N90 and (f) N120. The more bluish colours in the maps indicate 

higher R against the reference, the overall performance for the various scenarios is summarized 

in a boxplot (g). 
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Figure A5.2. Differences in R between the static and dynamic products (N90 and N120). For ERA-

Interim as the reference, (a) R of N90 minus R of static and (b) R of N120 minus R of static. (c) 

and (d) show corresponding results with (a) and (b) when using MERRA-Land as the reference. 

With relation to Figure 4a in the main manuscript, it is shown that the differences are more 

contrasted with shorter N sizes. 
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Figure A5.3. Mean weights used for dynamically combined soil moisture products. For ERA-

Interim as the reference, (a) presents mean weights from N90 over the 2-year study period, and 

(b) from N120. (c) and (d) show corresponding results with (a) and (b) when using MERRA-Land 

as the reference. 
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Figure A5.4. Standard deviations of optimal weights used for dynamically combined soil moisture products. For ERA-Interim as the reference, (a) presents 

standard deviations from N60 over the 2-year study period, (b) from N90, and (c) and N120. (c), (e) and (f) show corresponding results with (a), (b) and (c) 

when using MERRA-Land as the reference. 
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Chapter 6  Spatial Disaggregation of Coarse Soil Moisture Data 

by Using High Resolution Remotely Sensed Vegetation 

Products 

A novel approach is presented to spatially disaggregate coarse soil moisture (SM) by only using 

remotely sensed vegetation index. The approach is based on the conditional relationship of 

vegetation with time-aggregated SM, allowing the coarse scale SM (0.25°) to be disaggregated 

to the spatial resolution of the vegetation product (0.05°). The method was applied to satellite-

derived SM over Jan. 2010–Dec. 2011, using the high-resolution normalized difference 

vegetation index (NDVI). The results were evaluated against ground measurements during the 

2-year period over the contiguous United States and Spain, and also compared with an existing 

independent disaggregation method that also requires land surface temperature observations. 

It is shown that the proposed approach can provide fine resolution SM with reasonable spatial 

variability. 

This chapter is an edited version of: Kim, S.; Balakrishnan, B.; Liu, Y.Y.; Johnson, F.M.; Sharma, 

A. (2017). Spatial Disaggregation of Coarse Soil Moisture Data by Using High Resolution 

Remotely Sensed Vegetation Products. IEEE Geoscience and Remote Sensing Letters  

6.1. Introduction 

The direct use of satellite soil moisture (SM) products has been limited by their coarse spatial 

resolution (>100 km2) and uncertainties resulting from the complex SM retrieval procedures 

(Dorigo et al., 2010; Kim et al., 2015a). Current research is focusing on both these problems; to 

reduce the uncertainties (Kim et al., 2015b, 2016b; Kornelsen & Coulibaly, 2015; Su et al., 2013a) 

and to downscale the satellite microwave measurements to a finer spatial resolution 

appropriate for regional SM assessments (Kim & Barros, 2002; Merlin et al., 2012; Pellenq et al., 

2003; Piles et al., 2011; Shin & Mohanty, 2013). 
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Compared to microwave sensors, optical/thermal sensors can provide observations at a 

relatively high spatial resolution observation. The tradeoff is that the optical/thermal sensors 

are affected by atmosphere conditions such as clouds (Vermote et al., 2002). This suggests that 

data collected by optical or thermal sensors may be useful in spatially disaggregating the coarse 

microwave SM products. Disaggregation develops relationships between SM estimated from the 

microwave sensors and land surface temperature (LST) and/or appropriately selected 

vegetation indices (VI) which are available at finer spatial resolutions. For example, Fang et al. 

(2013) used look-up tables to relate the datasets at the coarse spatial scale to the daily 

temperature difference at a finer spatial scale to disaggregate the daily average SM. Peng et al. 

(2015) recently proposed a SM disaggregation method by using the vegetation temperature 

condition index (VTCI) as a soil moisture proxy. The method spatially distributes a coarse SM 

value (0.25°) to fine values (0.05°) which are linearly proportional to the VTCI at a 0.05° 

resolution. 

However, these methods require the vegetation and LST data at both the coarse and fine 

scales to be available at the same time as the SM data. This presents a problem as there are 

many missing values in LST datasets from optical/thermal infrared sensors due to cloud masks 

and thus the disaggregated SM products tend to be discontinuous. For example, it is just around 

45% annual mean percentage of the contiguous United States (CONUS) domain for which 

satellite land surface data are typically available (Crosson et al., 2012). In this chapter, the 

temporal interaction of SM with higher resolution vegetation proxies is considered as an 

alternative to the LST-derived information, and a simple SM disaggregation model is developed 

to provide a continuous time series of SM with a persistence structure closer to what is observed. 

Two case studies were used to validate the proposed method. First, using the new method, 

coarse SM at a spatial resolution of 0.25° (approximately 25 km, hereafter referred to as ‘coarse’) 

is disaggregated to fine SM at 0.05° (approximately 5 km, hereafter referred to as ‘fine’) over 

the CONUS for a 2-year study period from January 2010 to December 2011. The results were 

evaluated against in situ SM measurements from ground stations distributed over the CONUS. 
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The method was also applied to the REMEDHUS network in Spain for a direct comparison with 

(Peng et al., 2015) by applying the same SM data, study period and area. Importantly, this 

analysis over the dense network is to evaluate the disaggregated SM in terms of its ability to 

reproduce the spatial variation at the fine spatial scale.  

6.2.  Data and Processing 

6.2.1. Satellite Soil Moisture 

The European Space Agency Climate Change Initiative (ESA CCI) SM has been generated using 

four passive and two active microwave space-borne instruments covering 36 years from 1978 

to 2014 (Liu et al., 2012; Liu et al., 2011b). It consists of three products: active, passive and 

active-passive merged data which provide daily surface SM at a spatial resolution of 0.25°. 

Among them, the merged data (version 02.2) was used in this study which has been 

comprehensively validated with promising performances at the global scale (Dorigo et al., 2014), 

and also used in Peng et al. (2015).  

6.2.2. Ground Soil Moisture Networks over Study Areas 

The primary study area was selected as the CONUS (24.25°N-49.50°N, 66.75°W- 125°W). It 

covers a wide range of climate and land cover types which allows the general applicability of the 

proposed method to be assessed. The four dominant climate zones are cold in the northern 

areas, arid in the western regions, temperate in the central and middle Atlantic coast regions, 

and tropical in the southern Florida (Homer et al., 2015). There is also an extensive network of 

in situ SM stations for evaluating disaggregation results. 

Spatially dense networks are necessary to validate spatial variability of disaggregated SM at a 

sub pixel scale. The secondary study area over the REMEDHUS network covers a flat spatial 

domain (41.00°N-41.75°N, 5.00°W-5.75°W, approximately 1300 km2). The land cover mainly 

consists of croplands and shrub lands and the climate is classified as semi-arid continental 
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Mediterranean and the network consists of more than 20 stations within the area and has been 

frequently used for validating disaggregated remotely sensed SM data (Piles et al., 2010; 

Sánchez et al., 2012) including (Peng et al., 2015).  

 

Figure 6.1. Locations of ground stations (red crosses) used for validation. (a) 177 stations over 

the CONUS. (b) 17 stations over the REMEDHUS network in Spain. Each location is classified 

into the climate zones by the updated world map of the Koppen-Geiger climate classification 



Chapter 6  

107 | P a g e  

 

The ground SM measurements were obtained from the ISMN measurements to which the 

data preprocessing steps in 4.2.2 were also applied. The timestamp of the CCI SM data in 

coordinated universal time was used to select the closest hourly ground soil moisture 

measurements. The daily observation timestamp was applied to select ground soil moisture 

measurements (hourly) that are closest to the timestamp. If there is more than one station in 

the fine grid cell, the measurements were averaged on daily basis. Only stations with at least 

100 observations coincident with the coarse SM data and with positive temporal correlations 

were used. The distribution of the selected stations for each study area (177 for the CONUS and 

17 for the REMEDHUS) is shown in Figure 6.1. 

6.2.3. MODIS Vegetation Index 

The MODIS-derived 16-day composite NDVI (MOD13Q1) was used for this study. As it consists 

of 10°×10° tiles in the sinusoidal projection, they were reprojected and resampled to both 

coarse (0.25°) and fine scales (0.05°) using the re-projection tool (Dwyer & Schmidt, 2006). It 

was used only quality assured (QA) data of which pixel-level QA code (Didan et al., 2015) is at 

least ‘lower quality’. The pixel-level QA code for the MODIS NDVI product is a 16-bit binary code 

flagging the land surface/atmosphere conditions and representing quality levels. The ‘lower 

quality’ is the second level after the ‘highest quality’ among eleven grades in total. Note that, 

for the fine scale product, due to the large data size involved, only regions over coarse grid cells 

where an in situ station exists and 8 coarse grid cells surround it (i.e. 3×3 coarse grid cells where 

15×15 fine grid cells coexist for each group of stations) were processed.  

One of major issues for the MODIS products is the large gaps in time and space due to cloud 

masking. These gaps negatively affect the disaggregation process and hence a three-dimensional 

(3-D) gap filling method (Garcia, 2010) was simply adopted in a practical manner. This is a 

Penalized Least Square regression based on 3-D Discrete Cosine Transform (DCT-PLS) which 

solely relies on a smoothing parameter s (the higher the s, the smoother the result). In this study, 

the 16-day composite NDVI products over the study period were simultaneously filled by the 

DCP-PLS method using a s of 10-6 which was fairly applied for filling gaps in a SM product (Wang 



Chapter 6  

108 | P a g e  

 

et al., 2012). Then, the gap-filled NDVI maps were regarded as a series of snapshots at the middle 

of the composite periods and then linearly interpolated to daily time scale along the CCI SM 

timestamp at each grid cell. It should be noted that these simple processes for the NDVI data 

could introduce more uncertainty which may lead to poorer SM estimates, but this topic is 

beyond this study and could be addressed separately through various approaches. For example, 

Fang et al. (2013) used a sinusoidal fitting method for estimating daily values from the MODIS 

NDVI product. Weiss et al. (2014) developed an algorithm for filling gaps in MODIS EVI and LST 

datasets by utilizing ratios from nearby non-gap pixels derived at two points in time. 

6.3.  Methodology 

6.3.1. Proposed Disaggregation Method 

The rationale behind the proposed disaggregation method is that the disaggregated data 

should smoothly transition from one-time step to the next due to the SM memory interacting 

with regional vegetation conditions. To start, a simple linear relationship was formed to 

characterize coarse NDVI and temporally aggregated coarse SM within a past n-day window at 

each location as 

 𝑆𝑀̅̅ ̅̅
𝐼,𝐽,𝑡 = 𝐿𝐼,𝐽 ∙ 𝑁𝐷𝑉𝐼𝐼,𝐽,𝑡 + 𝐶𝐼,𝐽 Eq. 6.1 

where 𝐿𝐼,𝐽  is a slope estimated by linear regression at a coarse grid cell of which spatial 

indices are I (row) and J (column) respectively. 𝐶𝐼,𝐽  is an intercept and 𝑆𝑀̅̅ ̅̅
𝐼,𝐽,𝑡  is an 

exponentially weighted temporal average of SM over the past n days prior to time k = t as 

   𝑆𝑀̅̅ ̅̅
𝐼,𝐽,𝑡 =

∑ 𝛼𝐼,𝐽
𝑘−𝑡𝑡

𝑘=𝑡−𝑛+1 ∙ 𝑆𝑀𝐼,𝐽,𝑘

∑ 𝛼𝐼,𝐽
𝑘−𝑡𝑡

𝑘=𝑡−𝑛+1

 Eq. 6.2 

where 𝛼𝐼,𝐽(0-1) is a decay coefficient which reflects local properties together with temporal 

window size n (days, integer), and was adopted for more flexible fitting. Namely, Eq. 6.1 matches 

two variables by linearly scaling NDVI with the 𝐿𝐼,𝐽  and 𝐶𝐼,𝐽 , and temporally 

aggregating/smoothing SM with the n-day window and 𝛼𝐼,𝐽 . Optimal coefficients can be 

obtained by maximizing the coefficient of determination ( R2 ) of Eq. 6.1, and results are 
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presented in the next section. Namely, given NDVI and coarse SM at a coarse grid cell, the four 

parameters can be considered as the best possible measures for statistically matching the two 

datasets. 

Figure 6.2 provides an example of the relationship represented by Eq. 6.1 at a coarse grid cell 

(0.25°) located in the northwest of CONUS (42.95° N, 117.02°W). The climate zone is ‘arid’ and 

one of in situ stations from the Soil Climate Analysis Network (SCAN), ‘Jordan Valley Cwma’, is 

located within the coarse grid cell. The top panel of Figure 6.2 presents the NDVI and CCI SM 

datasets over the coarse grid cell. The NDVI timeseries was scaled by L and C in Eq. 6.1, and then 

the CCI SM was smoothed and aggregated by n and α in Eq. 6.2. The four parameters were 

optimized by maximizing R2 between the scaled NDVI and smoothed coarse SM. As result, the 

maximized R2 was 0.88, showing a good match between the two datasets.  

Then, a finite difference between changes in NDVI and 𝑆𝑀̅̅ ̅̅  is adopted over two days, where 

∆𝑁𝐷𝑉𝐼𝐼,𝐽,𝑡 is the temporal difference in NDVI between k = t and k = t - 1. Note that, the intercept 

𝐶𝐼,𝐽 is deleted in this case. 

 

Figure 6.2. Relationship between scaled NDVI and temporally aggregating/smoothing SM at 

‘Jordan Valley Cwma’ station 
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  𝑆𝑀̅̅ ̅̅
𝐼,𝐽,𝑡 = 𝑆𝑀̅̅ ̅̅

𝐼,𝐽,𝑡−1 + 𝐿𝐼,𝐽 ∙ ∆𝑁𝐷𝑉𝐼𝐼,𝐽,𝑡 Eq. 6.3  

The proposed disaggregation method links Eq. 6.2, Eq. 6.3, 𝐿𝐼,𝐽 and 𝛼𝐼,𝐽 to the fine scale 

spatial resolution. Therefore, Eq. 6.2 and Eq. 6.3 are rearranged in terms of SM and NDVI at the 

fine spatial resolution as 

 
∑ 𝛼𝐼,𝐽

𝑘−𝑡𝑡
𝑘=𝑡−𝑛+1 ∙ 𝑆𝑀𝑖,𝑗,𝑘

∑ 𝛼𝐼,𝐽
𝑘−𝑡𝑡

𝑘=𝑡−𝑛+1

= 𝑆𝑀̅̅ ̅̅
𝑖,𝑗,𝑡−1 + 𝐿𝐼,𝐽 ∙ ∆𝑁𝐷𝑉𝐼𝑖,𝑗,𝑡 Eq. 6.4 

 

𝛼𝐼,𝐽
0 ∙ 𝑆𝑀𝑖,𝑗,t + ∑ 𝛼𝐼,𝐽

𝑘−𝑡𝑡−1
𝑘=𝑡−𝑛+1 ∙ 𝑆𝑀𝑖,𝑗,𝑘

∑ 𝛼𝐼,𝐽
𝑘−𝑡𝑡

𝑘=𝑡−𝑛+1

= 𝑆𝑀̅̅ ̅̅
𝑖,𝑗,𝑡−1 + 𝐿𝐼,𝐽 ∙ ∆𝑁𝐷𝑉𝐼𝑖,𝑗,𝑡 Eq. 6.5 

 

 

𝑆𝑀𝑖,𝑗,𝑡 = {𝑆𝑀̅̅ ̅̅
𝑖,𝑗,𝑡−1 + 𝐿𝐼,𝐽 ∙ ∆𝑁𝐷𝑉𝐼𝑖,𝑗,𝑡} ∙ ∑ 𝛼𝐼,𝐽

𝑘−𝑡

𝑡

𝑘=𝑡−𝑛+1

 

− ∑ 𝛼𝐼,𝐽
𝑘−𝑡

𝑡−1

𝑘=𝑡−𝑛+1

∙ 𝑆𝑀𝑖,𝑗,𝑘 

Eq. 6.6 

where 𝑆𝑀𝑖,𝑗,𝑡  𝑁𝐷𝑉𝐼𝑖,𝑗,𝑡  are disaggregated SM and NDVI at a sub grid cell (𝑖, 𝑗) and time t. 

When aggregated fine scale SM also needs to match the coarser scale value, so a re-scaling step 

is adopted to ensure consistency across both scales (Fang et al., 2013), and therefore quick 

responses in the daily coarse SM after rainfall can be directly propagated into the all sub-grids 

in proportion to the initially estimated SM values at all sub-grids by Eq. 6.6. 

   𝑆𝑀′𝑖,𝑗,𝑡 = (𝑆𝑀𝑖,𝑗,𝑡 −
1

𝑝
∑ 𝑆𝑀𝑖,𝑗,𝑡

𝑖,𝑗

) + 𝑆𝑀𝑰,𝑱,𝑡 Eq. 6.7 

where 𝑆𝑀′𝑖,𝑗,𝑡 is the corrected fine-scale SM and p is the total number of sub grid cells within 

a coarse grid cell, which is 25 (5×5) in the case of 0.25° to 0.05°. 

Because the disaggregation by Eq. 6.6 requires a window of length n days for the calculations, 

there is a warm-up period prior to the study period until the first n-day data is available. For 
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these initial days, the coarse SM is disaggregated to the fine scale using the ratio of the fine scale 

and coarse scale NDVI on that day. The warm-up period was not considered in validation. 

There are sometimes breaks in the timeseries of the CCI SM due to freeze-up and swath 

patterns of the instruments. These missing values within the n-day window produce large 

variability in the estimated temporal mean SM. To test this, 95% confidence limits on the mean 

SM are calculated using a two-sided t-test considering the number of available data in the n-day 

window. A small number of observations or a large standard deviation of SM values within the 

window increases width of the confidence limits. When the width is wider than ±0.2, the 

memory is regarded as unreliable and the coarse SM is disaggregated to the fine scale using the 

same method as the warm-up period disaggregation. The value of 0.2 is based on the threshold 

used for masking unreliable SM values under dense vegetation (De Jeu et al., 2008).   

6.3.2. Summary of VTCI Based Disaggregation Approach 

As discussed in the section 6.1, Peng et al. (2015) developed a SM disaggregation method 

which uses VTCI as a soil moisture proxy. The method assumes that fine scale LST and vegetation 

data can be combined using the VTCI to disaggregate the coarse soil moisture data. The method 

was chosen for validation purposes through a direct comparison with the results from this study, 

in terms of performance metrics and continuity in timeseries. A brief summary of this method 

and VTCI is presented here with full details in Peng et al. (2015). 

The VTCI attempts to represent the joint relationship between LST, vegetation and soil 

moisture. Various VI could be used, but here only NDVI was considered. When pairs of LST (x-

axis) and NDVI data (y-axis) at the coarse spatial scale are plotted, it generally forms a triangular 

or trapezoidal shape (Figure 2.1b) if it uses data from a large enough area to represent the entire 

range of SM and NDVI (Sandholt et al., 2002). This is called as the LST/NDVI feature space where 

a VTCI (0-1) is calculated by Eq. 6.8 with a pair of LST and NDVI at a sub grid cell (𝑖, 𝑗, 𝑡). 



Chapter 6  

112 | P a g e  

 

 𝑉𝑇𝐶𝐼𝑖,𝑗,𝑡 =  
𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑖,𝑗,𝑡

𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛
 Eq. 6.8 

where, 𝐿𝑆𝑇𝑚𝑎𝑥 and 𝐿𝑆𝑇𝑚𝑖𝑛 are the maximum and minimum LST conditioned by 𝑁𝐷𝑉𝐼𝑖,𝑗,𝑡, 

which are linear regression lines as the dry and wet edges of the LST/NDVI feature space 

respectively. After calculating all VTCI across all 𝑖 and 𝑗 at time t by Eq. 6.8, a coarse 𝑆𝑀𝐼,𝐽,𝑡 

is simply disaggregated by linear proportion to the VTCI at the fine spatial resolution as Eq. 6.9 

where 𝑆𝑀𝑖,𝑗,𝑡 and 𝑉𝑇𝐶𝐼𝑖,𝑗,𝑡 are disaggregated soil moisture and VTCI at the fine scale at the 

location (𝑖, 𝑗, 𝑡). 𝑆𝑀𝐼,𝐽,𝑡 is the corresponding coarse soil moisture at the location (𝐼, 𝐽) and the 

same time. 

 𝑆𝑀𝑖,𝑗,𝑡 = 𝑝 ×
𝑉𝑇𝐶𝐼𝑖,𝑗,𝑡

∑ 𝑉𝑇𝐶𝐼𝑖,𝑗,𝑡𝑖,𝑗
× 𝑆𝑀𝐼,𝐽,𝑡 Eq. 6.9 

In the procedure, a level of spatial coverage for the LST data is to be assured for effectively 

implementing this method. Peng et al. (2015) used only LST data which covers at least 75% of 

the study area. Actually, it was shown the temporal coverage of disaggregated SM by the VTCI 

method remarkably decreases compared to the coarse SM as shown in the timeseries of Peng 

et al. (2015) (Figure A6.1), and it is this problem of missing LST data that the proposed method 

in this study addresses. 

6.3.3. Evaluation Strategy 

For both study areas, all SM estimates were evaluated against in situ measurements using 

temporal correlation (R), root mean square error (RMSE), bias and unbiased RMSE (ubRMSE) 

(Entekhabi et al., 2010b).  

For the REMEDHUS area, the disaggregation results were directly compared with Peng et al. 

(2015) in terms of the four metrics, and spatial variability of disaggregated SM was evaluated as 

well. Correlations and separation distances were calculated for all possible pairs of station 

locations. The relationship of correlations with distance could then be checked for each product 

at the fine scale. 
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6.4.  Results and Discussion 

6.4.1. Parameter Optimization Results 

For optimizing the parameters in Eq. 6.6, 1-year data of SM and NDVI before the study period 

was additionally used for considering the warm-up period. Table 6.1 shows the optimization 

results for each climate zone. All parameters (α, n and L) over the REMEDHUS area are 

reasonably stable and have high R2. However, there is a much larger range of parameters and 

𝑅2 in the climate zones over the CONUS. It was found that R2 is higher in the arid region than 

temperate and cold, and parameters vary as per the climate zones over the CONUS. Long 

windows were generally necessary for sufficiently smoothing the highly variable CCI SM to 

match the slowly-varying NDVI. In detail, the longest n values are required for the arid regions 

followed by cold regions and finally temperate regions. The arid regions were found to have 

generally larger L values than the cold and temperate regions. 

Table 6.1. Statistics of optimal parameters for each study area.  

Study Area CC #Stan. Par. a Med. 25th 75th 

CONUS 

(177 stations) 

Arid 43 

α 1.00 1.00 1.00 

n 295 240 327 

L 0.12 0.06 0.20 

R2 0.40 0.22 0.56 

Tem. 79 

α 1.00 0.97 1.00 

n 194 157 244 

L 0.07 0.04 0.11 

R2 0.20 0.07 0.44 

Cold 55 

α 1.00 0.93 1.00 

n 254 202 326 

L 0.04 0.02 0.09 

R2 0.25 0.11 0.47 

REMEDHUS 

(17 stations) 
Arid 17 

α 0.98 0.98 0.98 

n 152 149 159 

L 0.50 0.38 0.52 

R2 0.69 0.66 0.71 

a Constraints for parameters: 0≤α≤1, 2≤n≤365 (integer), and 0≤L≤1 / CC = climate classification, Tem. = 

temperate, Par. = parameter, Med. = median, OOth = OO% percentile, #Stan. = number of stations 
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6.4.2. Results of the CONUS 

As shown in the box plots in Figure 6.3, the disaggregated SM are compared to the CCI SM in 

terms of the four metrics against all ground stations over the CONUS by the three climate zones 

(i.e. arid, temperate and cold). The CCI SM shows the best performance in the arid regions, the 

cold regions come second and the temperate, third. This sequence in performance by the 

climate zones directly propagates into the disaggregated SM with a slight performance 

degradation compare to the CCI SM. As the proposed SM disaggregation method only uses the 

NDVI product, the performance degradation is closely related with the quality and applied pre-

processing of the NDVI product. Regarding this, to obtain better disaggregation results, it is 

necessary to conduct further investigations on the use of other VI products and associated pre-

 

Figure 6.3. Box plots by three climate zones showing distributions of (a) R, (b) bias, (c) RMSE, 

and (d) ubRMSE of CCI SM (0.25°) and disaggregated SM (0.05°) against in situ SM from 177 

ground stations over the CONUS (43 stations for arid region, 79 for temperate and 55 for cold) 
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processing steps such as gap-filling, temporal interpolation and quality assurance (Fang et al., 

2013; Weiss et al., 2014). 

6.4.3. Results of the REMEDHUS 

The proposed disaggregation approach provides similar performances in terms of the four 

metrics (Table 2). This is in line with the results of the CONUS and means that the proposed SM-

NDVI relation can replace LST information used in the latter approach. In addition, the temporal 

behavior of disaggregated SM is explicitly modelled in the proposed approach without breaks as 

shown in Figure 6.4a and b which are clearly compared to the results in Peng et al. (2015) (see 

Figure A6.1).  

Figure A6.2 shows spatial patterns of disaggregated soil moisture by Peng et al. (2015) and 

the method proposed by this study on 22 May 2010. However, the spatial domain of this study 

only covers 3x3 coarse grid cells (i.e. 0.25°) in which the 17 REMEDHUS stations are distributed. 

Comparisons for similarities or differences between them can be made with a further 

implementation of the spatial disaggregation over a wider spatial domain. Regarding this, as 

shown in Figure 6.4c, it is presented spatial variability of in situ, CCI and disaggregated SM using 

the correlations of all possible pairs of station locations (i.e. 136 in this case) (y-axis) with 

distance (x-axis, km). Whereas the CCI SM has almost identical R over the pairs, the 

disaggregated SM properly captures the spatial variability of the in situ SM. 

Table 6.2. Disaggregation Results for REMEDHUS Area 

Metric R 
Bias 

(m3/m3) 

RMSE 

(m3/m3) 

ubRMSE 

(m3/m3) 

CCI SM (0.25°) 0.58±0.13 0.06±0.08 0.11±0.05 0.06±0.01 

Dis. SM (0.05°) 0.49±0.14 0.06±0.09 0.11±0.04 0.05±0.02 

*The results in the metrics are slightly different from Peng et al. (2015) due to the QC flags to 

the ground measurements and the temporal coverage of the disaggregated SM between the 

two approaches 
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6.5. Conclusions 

In this study, the coarse data-derived SM-NDVI relation is proposed for spatially disaggregates 

coarse SM. The SM-NDVI relation is based on the optimal statistical matching of the scaled NDVI 

and smoothed CCI SM. The disaggregation results support the hypothesis that the SM-NDVI 

relation can replace the LST information in SM disaggregation. Accordingly, when LST data is 

unavailable or of poor quality, the proposed method provides a good alternative to existing 

approaches using LST data. Importantly, the proposed approach can provide continuous time 

 

Figure 6.4. Timeseries of in in-situ (green), CCI (red), and disaggregated SM (blue) at (a) 

Canizal and (b) Guarena station in the REMEDHUS network. (c) Representation of spatial 

variability in in-situ (green diamonds), CCI, and disaggregated SM over the REMEDHUS 

network 
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series of SM at the fine spatial resolution without losing the temporal variability of coarse SM. 

It also can correctly represent spatial variability in the disaggregated SM. 

However, the work presented here is a proof-of-concept study to demonstrate the feasibility 

of the proposed method and there are a few future opportunities that could lead to better 

results. The uncertainty in the disaggregated product could be assessed using improved SM 

products (Kim et al., 2016b) and different vegetation indices such as Enhanced Vegetation Index 

and Leaf Area Index. Second, a simple gap-filling method (Garcia, 2010) and linear interpolation 

were used in the NDVI datasets. The method can lead to poor or physically unrealistic results 

with when gaps are large (Wang et al., 2012). It would be worth examining whether other gap-

filling and interpolation methods (Fang et al., 2013; Weiss et al., 2014) could lead to better 

disaggregation performances. 

 

6.6. Appendix 

  

 

Figure A6.1. Disaggregation results from Peng et al. (2015). Timeseries of in in-situ (blue line), 

CCI (black dot), and disaggregated SM (red star) at (a) Canizal (K13) and (b) Guarena (M13) 

station in the REMEDHUS network.  
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Figure A6.2. Comparison between spatial patterns of disaggregated soil moisture by Peng et 

al. (2015) (left-bottom) and the method proposed by this study (right) on 22 May 2010.  
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Chapter 7  Flood Warning in a Watershed Using Readily 

Available Soil Moisture and Rainfall Data 

Soil moisture plays a key role in determining the antecedent condition of a watershed, while 

topographic attributes define how and where soil moisture and rainfall interact to create floods. 

Based on this, I present a method to identify flood risk at a location in a watershed by using only 

freely available remotely sensed or open access information such as soil moisture, rainfall, soil 

properties and topography. The method consists of three hydrologic modules, generation, 

transfer and accumulation of direct runoff, which are specified using only three calibration 

parameters for each catchment of interest. As the flood risk is achieved by providing a relative 

flood warning rather than simulating actual flowrates, the three parameters were optimized by 

maximizing the Pearson correlation coefficient between the simulated and observed flowrate. 

Two types of remotely sensed soil moisture data were separately applied for assessing how they 

affect model outcomes. The first is surface soil moisture available in near real-time for flood 

warning but less suited for determining antecedent conditions, and the second is the root zone 

soil moisture that is more suitable but takes longer time to be processed. As a proof-of-concept 

study, the proposed model was verified using contingency table-derived skill measures from the 

modelled and observed data series from a 2-year study period over 24 hydrologic reference 

stations in the Murray-Darling Basin in Australia. Although the case using root zone soil moisture 

data generally presented better performance in validation, using surface soil moisture in near 

real-time also showed promise as a means of providing quick warnings. Additionally, it was 

shown that the three calibration parameters are dependent on the watershed size and the soil 

moisture data used, allowing the shortcomings of using surface soil moisture for representing 

the antecedent condition to be mitigated where optimized parameters were available. More 

importantly, it was shown that the mean values of parameters estimated from neighbouring 

watersheds can be alternatively used for flood warning, allowing warnings to be issued in 

ungauged basins. 
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This chapter was submitted for publication: Kim, S.; Johnson, F.M.; Liu, Y.Y.; Sharma, A., Flood 

Warning in A Watershed Using Readily Available Soil Moisture and Rainfall Data.  

7.1  Introduction 

The Pakistan flood in 2010 left roughly 20% of the country’s area under water, caused severe 

economic damage, and led to the loss of over 2000 lives and displacement of 20 million people 

(Syvitski & Brakenridge, 2013). As presented in Figure 7.1a-d, the satellite-derived SM clearly 

shows the flood evolution even at the coarse spatial resolution of 0.25° (approximately 25 km). 

One can observe changes in the SM images at pre-flood conditions (10 July), peak flood 

conditions (28 July – 4 August) and inundation conditions (13 August). As the event progressed, 

SM levels steadily increased, leading to more precipitation becoming runoff and ultimately 

producing extensive inundation (Figure 7.1e-h and i). This is consistent with the considerable 

literature on this topic, which states that antecedent SM affects runoff more significantly that 

often considered in simplistic modelling alternatives (Castillo et al., 2003; Pathiraja et al., 2012; 

Ruggenthaler et al., 2015). 

For these reasons, antecedent SM and rainfall are critical elements to induce flooding in a 

watershed, and flood estimation using traditional hydrologic models requires information on 

rainfall and SM in space and time (Crow & Ryu, 2009). The combined effect of the spatiotemporal 

dynamics of SM and rainfall can explain most variability in runoff prediction and needs careful 

representation for accurate modelling outcomes (Durán-Barroso et al., 2016). 

The case from the Pakistan flood suggests that using information on SM conditions could 

provide evidence of flood likelihood. Indeed, the use of remotely sensed and/or open access 

data for hydrologic prediction over remote and ungauged regions has been investigated in many 

studies across the world. For example, satellite-derived SM data has been used for determining 

reliable antecedent conditions of watersheds in rainfall-runoff modelling (Alvarez-Garreton et 

al., 2014; Brocca et al., 2010; Chen et al., 2011; Houser et al., 1998; Komma et al., 2008). Those 
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SM data were also assimilated into hydrological models for correcting biases in precipitation, 

initial condition or both (Crow & Ryu, 2009; Massari et al., 2014; Wanders et al., 2014). However, 

many previous approaches were based on lumped hydrologic models and have been applied for 

small watersheds, assuming spatiotemporally constant rainfall events over the area. While 

distributed models can be used for such applications, they normally require large amounts of 

data, information and parameters for accurately representing the processes involved (Francés 

et al., 2007). Such data are not fully available for the sparsely gauged or ungauged watersheds 

where flood warnings are often needed. 

A novel approach is proposed in this chapter to address these limitations. A simple flood 

warning indicator is developed that provides a qualitative assessment of near real-time flood 

risk across a watershed. The flood warning indicator combines readily available satellite-derived 

 

Figure 7.1. Spatiotemporal distributions of (a-d) soil moisture derived from the Advanced 

Microwave Scanning Radiometer - Earth Observing System at 0.25°, (e-h) rainfall from the 

CHIRPS final product at 0.05°, and (i) inundated area recorded from Dartmouth Flood 

Observatory during the Pakistan flood in July - August 2010 
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SM and rainfall products with open-access topographic and soil data. The flood warning 

indicator considers where and how much rainfall occurs, along with the transfer and 

accumulation of the excess rainfall after infiltration (Lagadec et al., 2016). To represent these 

process, three layers have been considered; 1) SM as the antecedent condition preceding the 

rainfall event, 2) rainfall as external forcing, and 3) topographic attributes defining how and 

where the two factors interact. 

The objective of this study is to develop a model which generates flood warnings based on 

spatiotemporally variable remotely sensed rainfall and SM at a coarse spatial resolution over 

the catchment. This work is a proof-of-concept study focusing on multiple study areas but a 

short time-period. For this, the flood warning model was calibrated and tested over 24 

hydrologic reference stations (HRS) in Murray-Darling basin in Australia (Turner et al., 2012) for 

a 2-year study period (each year for calibration and validation) to ascertain whether effective 

warnings are indeed possible or not. 

7.2  Study Area and Data 

7.2.1 Study Area 

 The Murray-Darling basin (MDB), consisting of three large rivers, the Darling River (2740 km), 

the Murray River (2520 km) and the Murrumbidgee River (1575 km), is a large semi-arid basin 

covering 14% of Australia's area (1.06×106 km2). The basin is characterized by high natural 

hydroclimatic variability (Leblanc et al., 2012), and is regarded as Australia’s food bowl, 

supplying one third of the national food supply with agricultural area covering more than 80% 

of the basin. As the MDB has been highly regulated, the proposed flood warning method was 

tested at 24 Hydrologic Reference Stations (HRS) in the MDB (Turner et al., 2012). The HRS have 

been selected as they have relatively long records of high quality flow data and have minimal 

regulation, land use change and other factors, with areas ranging from 130 to 22,885 km2 and 

elevation, 284 to 1351 m (above sea level). Locations of the 24 HRS catchments are shown in 

Figure 7.2 with further details provided in Table A7.1. 
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7.2.2 Data and Processing 

The required datasets covering the 2-year study period from 1 April 2015 to 31 March 2017 

are summarized in Table 7.1. The first year of data was used for model calibration and the second 

year for model validation. Two types of SM data were investigated in the modelling; 1) real time 

or near real time data which for each data type is the product available that has the shortest 

latency. 2) data with higher quality due to further processing but not available as quickly as the 

other (longer latency). The aim of having these two SM data types is to investigate the quality 

of predictions that can be made in real time as well as the quality of the predictions that could 

be made using more accurate data. The latter case can be used to assess the model performance 

if improvements are realized in real time remotely sensed products. 

A spatial resolution of 0.05° (approximately 5 km) was used as the common spatial resolution 

in this study. All data were resampled to this resolution using bilinear interpolation unless 

otherwise mentioned. The flowrate data for the 24 HRS stations were obtained from the 

Australian Bureau of Meteorology (http://www.bom.gov.au/waterdata/) for model calibration 

and validation which represent highly contrasting attributes in terms of flowrate magnitudes 

 

Figure 7.2. Locations of the 24 HRS stations in the MDB used for this study at (a) continental 

scale and (b) regional scale 

http://www.bom.gov.au/waterdata/
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and temporal variability. Mean and standard deviation over the 24 HRS stations for the 

calibration period are almost three times of those of the validation period.  

7.2.2.1 Soil Moisture Data 

To specify antecedent conditions, the AMSR2-LPRM surface zone SM (SZSM) product at 0.25° 

retrieved from the C-band (6.9 GHz) microwave observations at the descending overpass (i.e. 

1:30 AM) was used because it is expected that the soil moisture retrieved from the C-band will 

be more accurate than the X-band (10.7 GHz) (Parinussa et al., 2011c). Gaps in the SM product 

are inevitable due to the swath pattern of the instrument and the vegetation mask. Therefore 

the gaps in time and space over the study period were simultaneously filled by the 3-D gap filling 

method (Garcia, 2010) as per Chapter 6 .  

For comparison with the AMSR2-LPRM SZSM, this work also considered a root zone SM (RZSM) 

product from the Soil Moisture Active Passive (SMAP) (Entekhabi et al., 2010a). It is known that 

assimilation of RZSM into a hydrologic model for defining the antecedent condition provides 

improvement in the model performance than using RZSM alone (Brocca et al., 2012). The SMAP 

Table 7.1. Summary of data used in this study 

Data Source Name Latency 
Resolution 

(Temp./Spa.) 
Units 

Soil Moisture 

AMSR2 
LPRM 

Level 3 
Surface 

Zone SM 
1 day Daily/0.25° m3/m3 

SMAP 
Level 4 

Root Zone 
SM 

7 days Daily/9km m3/m3 

Rainfall AWAP 
Gridded 

Daily 
Rainfall 

1 day Daily/0.05° mm 

Topographic 
attributes 

Soil 
Property 

HWSD 
Topsoil 

proportion  
 -/0.0083° % 

DEM SRTM DEM V4 - -/3” 
m  

(above 
sea level) 

Land 
Cover 

MODIS 
Land Cover 
(MCD12C1) 

- Yearly/0.05° - 
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Level 4 9 km Equal-Area Scalable Earth (EASE) -Grid Surface and Root Zone Soil Moisture 

Geophysical Data, Version 2 (SPL4SMGP) (Reichle et al., 2016), for which the spatial resolution 

is 9km×9km was used. This product is generated every 3 hours (i.e. 8 SM images in a day) using 

an ensemble Kalman filter merging SMAP observations with SM estimates from the NASA 

Catchment land surface model (Reichle & Koster, 2005). The product contains time-average 

RZSM along with spatial coordinate information. The 8 images in a day were arithmetically 

averaged on a daily basis. Note that the SMAP data provides spatially fully covered RZSM 

(m3/m3), but the typical latency of the product is 7 days that is comparable with the AMSR2-

LPRM SZSM data. 

7.2.2.2 Rainfall Data 

The 0.05° gridded rainfall data product from the Australian water availability project (AWAP) 

(Raupach et al., 2009) was used as the main rainfall forcing data in this study. The AWAP rainfall 

data is available from 1900 onwards as operational daily maps over Australia with a day of 

latency in typical, and has been used in several studies (Delworth & Zeng, 2014; Gergis et al., 

2012; Ji et al., 2014). The AWAP product was developed using a thin plate smoothing spline for 

interpolating monthly rainfall climatology, and a successive correction method to interpolate 

anomalies of daily rainfall (Beesley et al., 2009). 

7.2.2.3 Digital Elevation Models and Soil Data 

The 90m DEM from the Shuttle Radar Topographic Mission (SRTM) (Jarvis et al., 2008) was 

used for defining the topographic attributes after resampling to 0.05° by nearest-neighbour 

interpolation. Based on the resampled DEM, the method proposed by Wang and Liu (2006) was 

first applied for filling surface depressions which can lead to disconnected stream-flow patterns. 

The topo-toolbox (Schwanghart & Kuhn, 2010; Schwanghart & Scherler, 2014) was used for 

delineating watersheds through terrain analyses including calculation of gradient, flow direction 

detection by the steepest descent method (O'Callaghan & Mark, 1984) and calculation of flow 

accumulation numbers at each grid.  
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As discussed in the next section, direct runoff was estimated using the National Resources 

Conservation Service - Curve Number (NRCS-CN) method. This study used the CN derived 

potential retention (S) which requires land cover and soil type data (Hong & Adler, 2008). The 

most recent MODIS land cover (LC) product at 0.05° spatial resolution (MCD12C1) (data from 

2012) (NASA-LP-DAAC, 2012) was used. Soil attribute maps of silt, clay and sand at 90m spatial 

resolution were obtained from the Harmonized World Soil Database (HWSD) data (v1.2) 

(Nachtergaele & Batjes, 2012; Wieder et al., 2014). A CN map was prepared by classifying each 

0.05° grid cell into 12 texture classes of the United States Department of Agriculture (USDA) soil 

classification system (Cronshey, 1986) by using the soil attributes maps. Then the USDA 12 

texture classes were simply categorized into four hydrologic soil groups (HSG) A, B, C and D, and 

the CN of each grid cell was selected from the standard lookup tables (NRCS, 2010) according to 

the HSG classification and MODIS LC data. The estimated CN map was assumed to represent the 

normal antecedent moisture condition (AMC II).  

7.3  Method 

As shown in Figure 7.3, the proposed approach consists of three major modules for 1) runoff 

generation, 2) transfer and 3) accumulation. The first module generates direct runoff using the 

Soil Moisture Accounting (SMA) based NRCS-CN method (Michel et al., 2005) from the rainfall 

data at each grid with the antecedent conditions determined by the SM data. The 

spatiotemporally varying isochrones are generated by the second module using a modified 

version of the NRCS lag time equation (NRCS, 2010). The third module accumulates the direct 

runoff on a daily basis based on the isochrones which was adopted from Saghafian et al. (2002). 

Thus, the proposed flood warning system depends on accumulated direct runoff which is based 

on SM and rainfall during last a few days. Details of the model calibration and evaluation strategy 

are now presented. Note that the calculated direct runoff is expressed as a proxy (�̃�) because 

its variability and timing have been only considered for assessing the flood risk. 
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7.3.1 Module 1: Generation  

The original NRCS-CN is a rainfall-runoff model developed by the Soil Conservation Service of 

the US Department of Agriculture (NRCS, 2004). In the model, the direct runoff (Q) is simply 

calculated by Eq. 7.1 as an explicit function of rainfall (P) and the potential maximum retention 

(S). The potential retention is transformed from the dimensionless curve number (CN) by Eq. 7.2. 

The initial abstraction (Ia) includes surface storage, interception and infiltration before runoff 

and is assumed to be a proportion of S by a coefficient λ, which was originally suggested equal 

to 0.2 (i.e. Ia = 0.2S). Units for all the parameters mentioned above (i.e. Q, P, S and Ia) are 

millimetres. 

 

Figure 7.3. Flow chart of proposed method consisting of three modules 
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𝑄 =

(𝑃 − Ia)2

𝑆 + 𝑃 − Ia
 

for P > Ia, otherwise 𝑄 = 0 

Eq. 7.1 

 

 𝑆 =
25,400

CN
− 254 Eq. 7.2 

The simplicity of this approach has resulted in widespread applications since it was first 

developed in 1949 (NRCS, 2004). As it is an event-based rainfall-runoff modelling process there 

have been difficulties in determining the antecedent SM condition of the watershed in relation 

to the maximum potential retention S (Michel et al., 2005). In the original NRCS-CN method, the 

CN-derived S represents the average Antecedent Moisture Condition (AMC II), and it varies from 

AMC I (drier) to AMC III (wetter) depending on the antecedent condition. Although the 5-day 

Antecedent Precipitation Index (API5) had been commonly used to determine the AMC level, the 

need for alternatives has been suggested due to poor results derived from API5 (Beck et al., 2009; 

Brocca et al., 2008; Durán-Barroso et al., 2016; Massari et al., 2014; Mishra et al., 2005). 

As an alternative to the original method, Michel et al. (2005) proposed a simple method 

incorporating SMA into the NRCS-CN formulation. In this method, the initial SM condition is 

represented as SM store level (V0) within the total soil storage which equals the sum of the 

maximum potential retention (S) and threshold for runoff generation (Sa). The amount of direct 

runoff (Q) generated depends on the relative differences between V0, Sa and P, which are 

classified into three typical cases. The first case shows a condition in which sum of V0 and P is 

lower than Sa, and then P is completely retained within the Sa column. In the second case where 

V0 is lower than Sa but P + V0 is greater than Sa, the initial amount of P is first captured in Sa and 

then the remaining part (i.e. P + V0 - Sa) contributes to direct runoff (Q). In the third case when 

V0 is higher than Sa, Q depends on relative differences in fluxes of P and Q into and out of the 

total soil column (i.e. S + Sa). Further details for these three cases can be found in Michel et al. 

(2005). 
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The main issue for the SMA model is to estimate V0 which was not provided with an explicit 

form in the original work. In this study, as suggested by Durán-Barroso et al. (2016), V0 was 

assessed by the degree of saturation (θe) as 

 𝑉0 = θe ∙ 𝑆 Eq. 7.3 

Where θe  is a scaled value (0 to 1) of SM (θ) with respect to the maximum (θmax) and 

minimum observed SM (θmin) at each grid cell (Brocca et al., 2008).  

Michel et al. (2005) considered Sa as a constant portion of S (i.e. Sa = 0.33S) and Durán-Barroso 

et al. (2016) calibrated it as an independent parameter from S. In this study, Sa was regarded as 

a dependent parameter to S such as Sa = αS, and the ratio (α) was optimized to improve the 

model calibration as presented in Figure 7.4. Once V0 and P are given, direct runoff at each grid 

cell can be generated depending on the given condition of Sa. 

7.3.2 Module 2: Transfer 

The NRCS time lag method was originally developed to calculate the time of concentration by 

considering flow length, slope and water retention by S over a watershed (NRCS, 2010). In this 

study, transfer of the generated direct runoff is based on grid to grid temporal lag (TL) which 

represents grid to grid delay of flood effects. Adopting the approach to estimate the time of 

concentration, TL (hour) was calculated as 

 

Figure 7.4. Schematic diagram of SM storage used in this study. 
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 𝑇𝐿 =
𝑙0.8𝑆𝑅

0.7

β𝑌0.5
 Eq. 7.4 

where, 𝑙 = flow length (km), SR = soil storage room (mm), Y = average watershed land slope (%), 

β = time coefficient. 

Instead of using S in the original equation, the soil water storage room (SR), defined as SR = S 

+ Sa - V0 in Figure 7.4, was alternatively used to calculate TL by the SMA procedure incorporated 

in Module 1. Therefore, TL is varying in space and time because it is calculated by the 

spatiotemporally varying SR. Here, the time coefficient β is the second parameter to be 

optimized in this study.  

7.3.3 Module 3: Accumulation 

The calculated direct runoff for the last p days needs to be accumulated at a watershed outlet 

on a given day (t). For demonstration purposes, an example with 3-day of p is shown in Figure 

7.5, with a detailed explanation for Module 3 following.  

The storage room (SR(i, j, k)) and direct runoff (Q(i, j, k)) matrices for last 3 days based on 

Module 1 are prepared in advance using rainfall and SM maps. The size of the matrices is m×n×p 

of which spatial coordinates i are for rows (1 to m) and j for columns (1 to n), and k for time steps 

(t-3 to t). One can generate isochrones with the resulting SR matrix and results from the terrain 

analyses (i.e. flow direction, slope and flow length) obtained through Module 2. In the condition 

at k=t–3, TL is first calculated at the grid to grid basis by using temporal average SR(:, :, t-3:t) 

considering that the direct runoff generated at k=t–3 has been transferred to the outlet. Then 

total TL from a grid cell to the outlet is calculated by accumulating each grid to grid TL along the 

flow direction until it reaches the outlet. Once calculations over all grid cells in the watershed 

are completed, isochrones are formed by which the watershed area is divided into sections with 

discrete 24-hour units because the temporal resolution of rainfall and SM data is a day. 

At k=t-3, the section of interest is the area between 72 and 96-hour isochrones which 

represent the total travel time to k=t (3 days) and k=t+1 (4 days) respectively. Then the area 

overlapping with the rainfall field is regarded as the actual contributing area (at k=t–3) where 
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direct runoff is generated and integrated to �̃�𝑡−3
Par partially contributing to the total flowrate at 

the outlet at k=t. Here, �̃�𝑡−3
Par is generally expressed as Eq. 7.5 and defined as total summation 

of �̃�𝑖,𝑗,𝑘 that is direct runoff at a grid cell (i, j) within the actual contributing area at time k (ak).  

 �̃�𝑘
Par = ∑ �̃�𝑖,𝑗,𝑘

𝑖,𝑗∈a𝑘

 Eq. 7.5 

In the same manner, �̃�𝑡−2
Par, �̃�𝑡−1

Par and �̃�𝑡
Par are sequentially calculated and then summed 

to �̃�𝑡
Sim as in Eq. 7.6. Note that �̃�𝑡−2

Par is in this example because at−2 is zero even if it rains 

on the day. In this way, Module 3 is implemented for each day during the study period. 

 

Figure 7.5. Spatiotemporally varying time-area calculation of Module 3 
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 �̃�𝑡
Sim = ∑ �̃�𝑘

Par

𝑡

𝑘=𝑡−𝑝

 Eq. 7.6 

 An important consideration in Module 3 is p for calculating �̃�𝑡
Sim, which is the last (third) 

parameter to be optimized in this study.  

7.3.4 Optimization of Model Parameters 

In this study, there are three parameters to be optimized; 1) α for determining the threshold 

for runoff generation (Sa= αS), 2) β in Eq. 7.4 calculating TL and 3) p in Eq. 7.6 calculating the 

accumulated direct runoff to the outlet.  

As mentioned in the introduction, this study aims to provide a flood indicator rather than 

predicting flowrate at a location. For this reason, the three parameters were optimized to 

maximize the Pearson correlation coefficient (R) between timeseries of simulations (�̃�𝑡
Sim) and 

observations (𝑄𝑡
Obs) at each station (Legates & McCabe, 1999).  

 
Maximize R = f(α, β, 𝑝) =

E[(�̃�𝑡
Sim − μSim)(𝑄𝑡

Obs − μObs)]

σSimσObs
 

Subject to 0 ≤ α ≤ 2; 1 ≤ β ≤ 30; 1 ≤ 𝑝 ≤ 2𝑝0 (integer) 

Eq. 7.7 

where μSim and μObs are the mean values and σSim and σObs are the standard deviations 

of �̃�𝑡
Sim and 𝑄𝑡

Obs respectively. The upper bounds of the constraints were set as double the 

published recommended values (Durán-Barroso et al., 2016; Michel et al., 2005; NRCS, 2010). 

For example, the maximum Sa is twice S, β is limited to 30 which is nearly twice the value of 

16.88 by only the unit conversion of the original NRCS equation for calculating the time of 

concentration, and finally 𝑝0 is the maximum number of days calculated by the original NRCS 

equation using the CN-derived S.  

7.3.5 Model Evaluation Strategy 

The novelty in the method is how the accumulated direct runoff is used to indicate flood risk. 

Rather than focusing on actual flood magnitudes, the method provides a relative flood warning 
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by considering the exceedance probability of a particular flow accumulation relative to all flow 

accumulations over time at that location.  

For example, as presented in Figure 7.6, a flood warning threshold is set by mapping the 

historical floods in the catchment onto a cumulative distribution function (CDF) (red line) and 

adopting an exceedance probability (1-f1) at which a flood occurs. This is then transferred to the 

model flow accumulation CDF (blue line) and the equivalent simulation flow accumulation 

threshold, x1, is ascertained. By considering the thresholds at gauged locations within different 

catchments, a common threshold for regionalizing the flood trigger can be determined. The 

advantage of this approach is that the flood trigger indicator can then be applied at any point in 

the watershed because the proposed model can be spatially implemented.  

As the time-period considered is 2 years for this proof-of-concept study, the evaluation 

strategy shown in Figure 7.7a and b was adopted by alternatively focusing on high flowrates 

during the period. For this, top 10% of simulated daily direct runoff (�̃�𝑓
Sim) were first selected at 

 

Figure 7.6. Schematic for flood warning in a watershed based on matching the observed 

probability of a flood event with the simulated flow accumulation CDF 
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each station, and then the paired observation (𝑄paired
Obs ) regarded as a threshold for determining 

whether the flood occurred or not. Based on this, a 2×2 contingency table was established at 

each station for the model evaluation as shown in Figure 7.7c, consisting of hits (a), false alarms 

(b), misses (c) and correct rejections (d). If the simulation is in perfect linear correlation with the 

observation, both b and c are zeros in the table. 

The contingency tables were used to assess the model performance using a number of 

performance attributes (Wilks, 2011). The proportion correct (PC) represents the model 

accuracy and is calculated by  

 

Figure 7.7. Cumulative distribution functions (CDFs) of daily (a) simulations and (b) 

observations, showing (c) 2x2 contingency table based forecast evaluations in terms of hits 

(a, squares), false alarms (b, circles), misses (c, triangles) and correct rejection (d, pentagons) 

respectively. 
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 PC =
a+d

𝑛
  range [0, 1], best: 1 Eq. 7.8 

In cases where the number of events forecast is substantially less than non-occurrence flood 

events, the threat score (TS) is particularly useful. This is computed by 

 TS =
a

a+b+c
  range [0, 1], best: 1 Eq. 7.9 

Together with PC and TS, other metrics considered include the frequency of hits (FOH) and 

probability of detection (POD) as shown from Eq. 7.10 and Eq. 7.11 (Bartholmes et al., 2009) for 

evaluating the proposed flood warning method.  

 FOH =
a

a+b
  range [0, 1], best: 1 Eq. 7.10 

 POD =
a

a+c
  range [0, 1], best: 1 Eq. 7.11 

A total of three scenarios, S1 to S3, as shown in Table 7.2 according to the two SM data types 

were tested. S1, S2 and S3 commonly use the flowrate data for optimizing the three parameters. 

Among them, S1 and S2 are based on the SMAP RZSM and AMSR2-LPRM SZSM data respectively, 

which is for evaluating how the different SM datasets affect the parameter estimation and 

model capacity. S3 applies mean values of the optimal α and β parameters derived from S2 for 

Table 7.2. Three scenarios applied in this study 

Scenario 
Parameter 

(α, β, p) 
Soil Moisture Rainfall 

1 
Optima for each station 

using given data 

SMAP  

Root Zone SM 
AWAP 

2 
Optima for each station 

using given data 

AMSR2-LPRM 

Surface Zone SM 
AWAP 

3 
Means of optima from 

Scenario 2 

AMSR2-LPRM 

Surface Zone SM 
AWAP 
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a purpose of parameter regionalization. However, p was used as it was obtained from S2 

because p is related watershed sizes. Through the parameter regionalization, calibrated 

parameters from gauged basins can be transferred to ungauged ones based on geographical and 

functional similarity among the basins (Kim et al., 2016a).  

7.4 Results and Discussion  

7.4.1 Parameter Optimization Results 

During the 1-year calibration period (1 April 2015 - 31 March 2016), the parameter 

optimization was implemented over the 24 HRS stations. Figure 7.8 presents the results for the 

maximised R between �̃�𝑡
Sim and flowrate for the calibration and validation periods, and the 

three parameters (i.e. α, β and p).  

The maximised R of S1 is generally higher than S2, supporting that the RZSM provides better 

hydrologic responses compared to the SZSM which is in line with the results from Brocca et al. 

(2012). It is noteworthy that S3, using mean values of the optimal α and β parameters derived 

 

Figure 7.8. Parameter optimization results for S1, S2 and S3 using flowrate data as 

observations. (a) Maximised temporal correlation (R) between simulations and observations 

for the calibration (red) and validation period (blue), (b) α for determining the threshold for 

runoff generation (Sa= αS), (c) β for calculating the grid to grid temporal lag (TL) and (d) 

necessary last p days for calculating �̃�𝑡
Sim to the outlet. The horizontal bars in (b) and (c) for 

S3 indicate mean values of each parameter from S2. 
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from S2, shows a similar range of R with S2 in both calibration and validation periods. This shows 

potential applicability of the near real-time SM data for flood warning and that alternative 

parameters derived from neighbours can be used in ungauged basins through the parameter 

regionalization. 

The α and β parameters vary depending on which SM data has been used (Figure 7.8b and c). 

In S1, a higher α induces lower direct runoff, and lower β increases TL compared to S2. On the 

other hand, the lower α and higher β in S2 works to increase water flux at an outlet. The reason 

for this is less persistence in the SZSM in S2 than the RZSM in S1. Quickly dried SZSM values 

underestimate V0 over the region, and accordingly induce lower direct runoff and higher TL. 

However, actual V0 is not lowered as much as assessed due to the persistence of SM at lower 

levels resulting in higher actual direct runoff than the expectation. Accordingly, S2 makes up for 

the less persistence in the SZSM by increasing the water flux with the lower α and higher β 

parameters. With this, shortcomings of the SZSM for determining the antecedent condition can 

be mitigated. In case of p (Figure 7.8d), moderate to strong monotonic relations with the 

watershed sizes represented by Spearman's rank correlation coefficients (ρ), which are 0.63 and 

0.81 for S1 and S2 respectively, were found.  

7.4.2 Model Evaluation Results 

Evaluation results for the 10% threshold for flood warnings are presented as box plots in 

Figure 7.9a-d in terms of the 2×2 contingency table-based skill scores (i.e. PC, TS, FOH and POD). 

The box plots show the four skill scores over the 24 HRS stations by S1, S2 and S3, and the 

calibration and validation periods. 

S1 using the SMAP RZSM data generally shows better results than S2 and S3 at both 

calibration and validation periods. In addition to this, S1 provides similar or slightly better results 

at both periods resulting from the similar R of S1 during the calibration period (Figure 7.9a). The 

score similarity of S1 is mainly due to similar ratios of hits, false alarms, misses and correct 

rejections over both periods. However, S2 presents decreases in misses and increases in correct 

rejections while keeping similar rates of hits and false alarms from the calibration to validation 
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period. As the higher flood magnitudes during the calibration period form higher flood warning 

thresholds in the CDF of observations, more observations were classified as non-flooded cases. 

Accordingly, many misses were converted to correct rejections, leading to better or similar 

performance compared to the calibration period as shown in Figure 7.9. This tendency is 

stronger for S3 than S2, and results in better PC, TS and POD in the validation period, which are 

calculated based on misses and correct rejections. More importantly, the result that S3 presents 

similar performance as S2, which supports the argument that regionalized parameters can be 

potentially applicable over ungauged basins. 

It should be noted that this entire study relies on the use of a short (2-year) dataset to assess 

performance, which is a limiting factor given the statistical nature on the approach. It can 

therefore be expected that with availability of longer and better-quality data, the results 

presented here can be improved further. 

7.5  Discussion 

This proof-of-concept study focused on assessing feasibility of the proposed method using the 

24 HRS study areas over the 2-year calibration and validation period. From the above model 

 

Figure 7.9. Estimated 2×2 contingency table based four skill scores for S1, S2 and S3 using 

flowrate data as observations with 10% of threshold by the calibration (red) and validation 

period (blue). (a) Proportion correct (PC), (b) threat score (TS), (c) frequency of hits (FOH), 

and (d) probability of detection (POD) 
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evaluation results, the following suggestions are made. First, the data-dependency of α and β 

parameters suggests that estimation and use of parameters should be considered separately for 

each SM and rainfall data combination to be used for later application. For example, in case the 

AMSR2-LPRM SZSM and AWAP rainfall data are used in a watershed, it is more suitable to derive 

parameters using these data, rather than using other SM or rainfall products that may be 

available. Second, the physical limit of the SZSM for representing the antecedent condition can 

be controlled through the parameter optimization with lower α and higher β values. Third, the 

moderate to strong monotonic relation between p and the watershed size suggests that the p 

parameter can be regionalised as a function of watershed size. Then, as supported by the results 

from S2 and S3 showing that mean values of parameters estimated from neighbouring 

watersheds can be alternatively used for flood warning, in case of an ungauged basin having 

nearby gauged basins, alternative parameters regionalized from the neighbours can be usefully 

applied for issuing meaningful flood warnings.  

Although the maximised R following parameter optimization for all scenarios were generally 

moderate/strong, weak R (< 0.3) were observed over a few stations especially for S2 and S3, 

which resulted in relatively low skill scores. For this, improvements in either or both data (i.e. 

SM and rainfall) can result in an improved flood warning system, with reduced improvement if 

only one of the two are changed to better products. For example, the daily AMSR2-LPRM SZSM 

product at 0.25° is a near real-time SM data used in this study after simply filling gaps (Garcia, 

2010) and then resampling to 0.05° with bilinear interpolation, which offers a large room for 

improvement in terms of quality (Enenkel et al., 2016; Kim et al., 2015b, 2016b; Liu et al., 2011b).  

It should be noted that, even though the AWAP rainfall data used here has a high spatial 

resolution of 0.05° and is available in near real-time, it only covers the Australia domain. The 

0.05° gridded daily precipitation data from the Climate Hazards group Infrared Precipitation with 

Stations (CHIRPS) (Funk et al., 2015) can be used for applications over other regions. The CHIRPS 

precipitation data is available from 1981 onwards with the quasi-global coverage of 50°N-50°S, 

and the latest version of data, Version 2.0, was released in February 2015 
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(http://chg.geog.ucsb.edu/data/chirps/). However, the final product is produced with an 

approximate 3-week latency using all available station data but the preliminary product is 

produced with a 2-day latency using sparse gauge data only. Some rainfall products are available 

in near real-time but the coarse spatial resolution and low accuracy limit their application (Duan 

et al., 2016). Improvements in characterizing rainfall extremes using the Global Precipitation 

Mission (GPM) (Andrea et al., 2016) offer hope that better rainfall products with low latency will 

be made available in not too distant a future. 

7.6  Conclusions 

In this study, a method was presented for flood warning in a watershed using readily available 

SM and rainfall products, using open access data derived soil property and topographic 

information at coarse spatial scales. This flood warning method consisted of three modules for 

generation, transfer and accumulation of direct runoff. The novelty of the method was the use 

of an accumulated direct runoff for indicating flood risk at a location. This provides a flood 

warning based on the assessment of an exceedance probability, rather than predicting actual 

flood magnitudes that require greater model complexity and input accuracy. To assess the 

performance of this proposed approach, the sensitivity of the response under given SM and 

rainfall has been evaluated. For the model development, three parameters in the model were 

optimized by maximizing the temporal correlation between simulated values and observed 

flowrate from 24 hydrologic reference stations in the MDB over the 1-year calibration period. 

The outcomes from the proposed warning system show promise, with possibilities of extension 

to completely ungauged locations where no past flow observations exist. 

The proposed method, however, suffers from a number of limitations which can be addressed 

through further development. First, extended analyses at decadal-scales are required for 

applying the exceedance probability based flood warning system and estimating more 

representative parameters. Second, further investigations are necessary by applying various 

combinations of SM and rainfall products over watersheds having different attributes to those 

in MDB chosen in this study. This will shed greater light on the need for more sophisticated 

http://chg.geog.ucsb.edu/data/chirps/
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regionalisation alternatives than the simplistic nearest catchment approach used here. Third, 

improved SM and rainfall data needs to be incorporated into the proposed flood warning 

method, as and when new products are released. Forth, satellite-derived flood signals can be 

alternatively used for optimizing the parameters to be applied for ungauged basins in which 

direct measurements of flowrates are not available. For example, Khan et al. (2012) used 

microwave radiometer-detected water surface signal (Kugler & De Groeve, 2007) which are 

highly correlated with observed runoff for calibrating a hydrological model. Similarly, Revilla-

Romero et al. (2014) attempted to convert the water surface signal to river discharge, which 

could again form the basis for application to remote and ungauged catchments. Lastly, model 

refinements are needed when extending to regions having markedly different flood-causing 

mechanisms (such as snowmelt for instance). 
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7.7  Appendix 

  

Table A7.1. List of 24 the HRS stations within the MDB used in this study 

No. Station ID Name 
a Lat. 

(°) 

b Lon. 

(°) 
c Ele. (m) 

Area 

(km2) 

1 218001 Tuross River @ Tuross Vale -36.26 149.51 942.92 90.00 

2 401009 Maragle Creek @ Maragle -35.93 148.10 594.62 216.00 

3 401012B Murray River @ Biggara - Backup -36.32 148.05 519.21 1257.00 

4 401015 Bowna Creek @ Yambla -35.92 146.98 217.49 290.00 

5 401203 Mitta Mitta River @ Hinnomunjie -36.95 147.61 706.87 1519.00 

6 401208 Cudgewa Creek @ Berringama -36.21 147.68 519.59 351.00 

7 401210 Snowy Creek @ Below Granite Flat -36.57 147.41 575.53 416.00 

8 401212 Nariel Creek @ Upper Nariel -36.45 147.83 795.49 252.00 

9 401216 Big River @ Jokers Creek -36.93 147.47 902.06 357.00 

10 401217 Gibbo River @ Gibbo Park -36.76 147.71 779.65 390.00 

11 405209 Acheron River @ Taggerty -37.32 145.71 326.26 629.00 

12 410057 Goobarragandra River @ Lacmalac -35.33 148.35 596.06 668.00 

13 410061 Adelong Creek @ B@low Road -35.33 148.07 320.12 148.00 

14 410705 Molonglo River @ Burbong -35.34 149.31 761.92 509.00 

15 410730 Cotter River @ Gingera -35.59 148.82 1221.46 130.00 

16 410731 Gudgenby River @ Tennent -35.57 149.07 717.11 672.00 

17 410734 Queanbeyan River @ Tinderry -35.61 149.35 925.59 516.00 

18 412050 Crookwell River @ Narrawa North -34.31 149.17 584.69 762.00 

19 412066 Abercrombie River @ Hadley No.2 -34.11 149.60 749.97 1630.00 

20 416003 Tenterfield Creek @ Clifton -29.03 151.72 797.93 559.00 

21 416008 Beardy River @ Haystack -29.22 151.38 412.59 908.00 

22 418005 Copes Creek @ Kimberley -29.92 151.11 632.94 249.00 

23 418014 Gwydir River @ Yarrowyck -30.47 151.36 879.99 835.00 

24 419005 Namoi River @ North Cuerindi -30.68 150.78 397.10 2532.00 

* a: latitude, b: longitude, c: elevation above sea level 
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Chapter 8  Conclusion 

This chapter presents a summary of the main achievements from this thesis for the research 

objectives presented in Chapter 1. Then an outline of the research currently ongoing and planned 

in the future is presented, along with a discussion of the limitations associated with this research.  

8.1  Achievements and Summary 

This thesis was initially motivated by how to assess flood risk over sparsely gauged or 

ungauged basins. This required a methodology for forecasting and key information resources 

(rainfall and soil moisture) that could be made available without delay (and expenditure) for use 

in remote locations around the world. Accordingly, the research first focused on near-real-time 

open-access soil moisture products that had global coverage. The spatiotemporal availability of 

passive microwave derived soil moisture products in near real-time at the global scale was 

identified as a viable alternative to ground measurements. However, significant improvement 

was needed in order to make an impact on the quality of the flood forecasts that could be issued 

using these measurements. This thesis therefore represents a series of efforts to use satellite 

soil moisture products for assessing flood risk by redressing their drawbacks in terms of accuracy 

and spatial resolution. The main achievements in this thesis are summarized as follows as well 

as in Table 8.1. 

First, as reported in Chapter 3 , it was found the differences in performance of two alternate 

soil moisture products, JAXA and LPRM, which are derived from the same passive microwave 

observations of the AMSR2 radiometer, were a result of key uncertainties in each of the retrieval 

algorithms used. Notwithstanding the identical raw observations in time and space, and the 

simple radiative transfer model which is the common basis for both algorithms, these 

differences were found to be significant. The chapter explained why this is so merely 

documenting their performance in terms of error statistics against ground measurements. It was 

found that the reasons lie in the formulation of the different retrieval algorithms. These 
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differences are a result of variations in parameterizing vegetation, surface roughness and 

physical surface temperature, and then linking a dielectric constant to soil moisture, with the 

two products showing complementarity in their performance with temperature, surface 

roughness, vegetation and ground wetness. The main contribution of Chapter 3  was that the 

complementarity in the performance of the soil moisture products was identified practically and 

accordingly provided the basis for the combination based improvement in soil moisture 

reported in Chapter 4  and Chapter 5 .  

Based on this complementarity, a static linear combination was presented in Chapter 4 as a 

simple way to take the strengths of each soil moisture product into a combined dataset. Two 

soil moisture products were linearly combined into a new product by applying a weight (0-1) to 

each original product such that the summed weight equals one. The weights are optimal to 

Table 8.1. Summary of achievements in this thesis 

Objective Chapter Main Achievements Publication 

1 Validation 3 

· Algorithm based investigation on 

differences in soil moisture 

products 

· Identification of complementarity  

· Basis for improvement 

· Kim et al. (2015a) 

2 Improvement 

Accuracy 4, 5 

· Presentation of simple linear 

combination based methods for 

improving R of soil moisture in 

static and dynamic manner 

· Kim et al. (2015b) 

· Kim et al. (2016b) 

Spatial 

Resolution 
6 

· Presentation of soil moisture 

memory based disaggregation 

method providing continuous 

timeseries and spatial variability by 

only using vegetation index 

· Kim et al. (2017) 

3 Application 7 

· Presentation of flood warning 

method using operational soil 

moisture and rainfall data, and 

open access data derived 

information 

· Kim et al.  

(submitted) 
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maximize correlation between the combined product and a reference, and represents the 

relative strengths (and weaknesses) of each soil moisture product against the other. The global 

mean temporal correlation coefficient of the combined product with ERA-Interim as the 

reference was 0.52 which outperformed the individual JAXA (0.35) and LPRM (0.45) products. 

Further to this, the complementarity between the two original products (JAXA and LPRM) varied 

not only in space but also in time because it changed with regional conditions such as vegetation, 

temperature and soil wetness.  

Chapter 5 presented an extended method to the static combination approach in Chapter 4  

to reflect the time-varying complementarity in the soil moisture products. This was achieved by 

using a temporally dynamic data segment as the basis for combination instead of the entire data. 

The dynamic data segment is presumed to have more relevant information than the entire 

dataset assuming model structure inadequacies associated with JAXA and LPRM vary over time, 

and was used for calculating the time-varying weights at a spatiotemporal point of interest. The 

mean R of the dynamically-combined products were 0.57 and 0.62 for the ERA-Interim and 

MERRA-Land reanalysis products as the reference respectively; higher than those of the 

statically-combined products (0.55 and 0.54). 

In Chapter 6 , an approach was presented to spatially disaggregate coarse soil moisture by 

only using a remotely sensed vegetation index product. The method provides a continuous 

timeseries of disaggregated soil moisture with a persistence structure closer to what is observed. 

This is necessary because existing disaggregation approaches based on optical sensor-derived 

LST have many missing values. The large number of missing values is a result of cloud masks in 

the LST data and they induce a discontinuity in the timeseries of disaggregated soil moisture. It 

was found that the soil moisture memory (Koster & Suarez, 2001) interacting with regional 

vegetation could be an alternative to the LST. This idea was validated using ground 

measurements over the contiguous United States and REMEDHUS network in Spain. The 

disaggregated soil moisture represented better spatial variability compared to the coarse soil 

moisture.  
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Chapter 7 presented a method for flood warning within a watershed by incorporating readily 

available soil moisture and rainfall data, using open access data derived information into a series 

of flood warning calculations. It consisted of three modules for generation, transfer and 

accumulation of direct runoff. Three parameters in the model were optimized by maximizing 

temporal correlation between simulated and observed flowrate. Using the 24 Hydrologic 

Reference Stations in the Murray-Darling Basin, it was demonstrated that there are clear 

opportunities for the proposed method to be of use for the purpose of flood warning in 

ungauged watersheds. 

8.2  Limitations and Ongoing/Future Research 

First of all, it is necessary a consistent selection of data, study area and period which has not 

been achieved throughout the chapters due to the data availability and/or validation purpose 

at the time of each study. On the premise of this, Figure 8.1 shows the big picture that is 

eventually pursued based on the achievements from this thesis. First, for the improvement of 

the soil moisture products in Chapter 4 , 5 and 6, it is necessary for all proposed methods in this 

thesis to be integrated for producing an improved soil moisture product in terms of accuracy 

and spatial resolution. Further research is required to incorporate these into a single unified 

product which can be practically used in many hydrological applications. Then, the flood warning 

method proposed in Chapter 7 also needs to evolve to be applicable in ungauged basins. The 

following further investigations are necessary to realize the grand aim of this thesis, which is to 

provide real-time flood warnings to rural and remote communities around the world. 

Ideally, the work reported in Chapter 3 could be extended using multiple-year data instead of 

the single year data that was used. This would ensure a more comprehensive validation and 

examination of inter-annual variations, and provide better information for using and improving 

the soil moisture products in the future. The use of multiple-year data would also further the 

validation of the combined soil moisture products reported in Chapter 4 and 5. The 2-year data 

only allows limited validation using ground stations in which the AMSR2-LPRM product is found 
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better. More robust results would be obtained by using the temporally extended AMSR2 soil 

moisture data for which temporal coverage is now almost 5-years at present (February 2017).  

In addition to this, possible improvement exists for the combination based approaches in 

Chapter 4 and 5. First, three or more soil moisture products could be considered for the linear 

combination. This would add the strengths of each product, resulting from different algorithms 

and observational instruments. More importantly, using soil moisture data to estimate optimal 

weights for the combination in close to real-time would provide greater accuracy in case of 

operational flood forecasting. The reference datasets used for the static/dynamic linear 

combination are reanalysis products that are not available at the time of soil moisture retrievals 

as a few months are usually needed to prepare the reanalysis products. Therefore, a method is 

required for estimating optimal weights without such reference data, which could be an indirect 

way to use other applicable information such as regional vegetation, temperature and wetness 

condition.  

 

Figure 8.1. The bigger picture of the proposed flood warning system that uses improved soil 

moisture inputs in terms of both accuracy and spatial resolution 
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For the spatial disaggregation of coarse soil moisture, the soil moisture memory has been 

considered as an alternative to the optical sensor derived LST data where large gaps exist 

consequently causing frequent discontinuity in timeseries of disaggregated soil moisture. This 

problematic situation can be also resolved by filling the gaps in the LST data that can be used in 

the existing disaggregation methods using LST data such as Fang et al. (2013) and Peng et al. 

(2015). An applicable approach for this gap-filling is to use passive microwave derived LST 

(Holmes et al., 2009). Optical sensing and passive microwave derived LST showed a good 

agreement in Parinussa et al. (2016), and the cloud penetrating capability of microwave and high 

spatial resolution of optical sensing can be combined in future work.  

For the proposed flood warning method to be generally applicable, it should be supported by 

further investigations with other operational soil moisture and rainfall products under different 

geographical and climate settings. In addition to this, it would be useful for calibrating 

parameters to use satellite-derived signals of water level and flow, and/or another objective 

function so the proposed method can be made applicable to ungauged watersheds. Additionally, 

methods for reducing the latency of the data products that led to improved forecasts are 

required. This would allow the proposed method to be adopted for operational flood warnings 

in ungauged catchments where it is most needed. 

8.3  Closing Remarks 

It is important to have adequate spatiotemporal information on soil moisture to improve 

hydrological forecasting capacities. Even though (active or passive) microwave based soil 

moisture retrievals are a unique resource for providing surface soil moisture in near real-time at 

the global scale, improvements are still required. This thesis has attempted to answer this need 

through a series of investigations. Together with the thesis outcomes, ongoing and future 

research will form an integrated pathway for producing an improved soil moisture product 

available at finer spatial resolution, which can be used for various regional applications. Lastly, 

the proposed flood warning method has potential to be an applicable tool for ungauged 
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watersheds with further investigations and refinement, and it is also possible to be cast into a 

hydrological model for simulating actual flowrates. 
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